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5. CONDITIONING AND REGRESSION
Recall that the conditional density of Y given X = x is

fY |X(y|x) := fX,Y (x, y)/
∫

fX,Y (x, y)dy.

Conditional means.
The conditional mean of Y given X = x is

E(Y |X = x),

a function of x called the regression function (of Y on x). So, if we do not
specify the value x, we get E(Y |X). This is random, because X is random
(until we observe its value, x; then we get the regression function of x as
above). As E(Y |X) is random, we can look at its mean and variance.

Recall (SP, Ch. II)

THEOREM (Conditional Mean Formula). E[E(Y |X)] = EY .

Interpretation. EY takes the random variable Y , and averages out all the
randomness to give a number, EY .
E(Y |X) takes the random variable Y , and averages out all the randomness
in Y NOT accounted for by knowledge of X.
E[E(Y |X)] then averages out the remaining randomness, which IS accounted
for by knowledge of X, to give EY as above.
Example: Bivariate normal distribution, N(µ1, µ2; σ

2
1, σ

2
2; ρ), or N(µ, σ),

µ = (µ1, µ2)
T , σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
=

(
σ11 σ12

σ12 σ22

)
.

Then

E(Y |X = x) = µ2 + ρ
σ2

σ1

(x− µ1), so E(Y |X) = µ2 + ρ
σ2

σ1

(X − µ1).

So

E[E(Y |X)] = µ2 + ρ
σ2

σ1

(EX − µ1) = µ2 = EY, as EX = µ1.
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As with the bivariate normal, we should keep some concrete instance in
mind as a motivating example, e.g.:
X = incoming score of student [in medical school or university, say], Y =
graduating score;
X = child’s height at 2 years (say), Y = child’s eventual adult height,
or X = mid-parent height, Y = child’s adult height, as in Galton’s study.

Recall also (SP, Ch. II)

THEOREM (Conditional Variance Formula).

varY = EXvar(Y |X) + varXE(Y |X).

Interpretation.
varY = total variability in Y,

EXvar(Y |X) = variability in Y not accounted for by knowledge of X,

varXE(Y |X) = variability in Y accounted for by knowledge of X.

Example: the bivariate normal.

Y |X = x is N(µ2 + ρ
σ2

σ1

(x− µ1), σ
2
2(1− ρ2)), varY = σ2

2,

E(Y |X = x) = µ2 + ρ
σ2

σ1

(x− µ1), E(Y |X) = µ2 + ρ
σ2

σ1

(X − µ1),

which has variance (ρσ2/σ1)
2varX = (ρσ2/σ1)

2σ2
1 = ρ2σ2

2;

var(Y |X = x) = σ2
2(1− ρ2), EXvar(Y |X) = σ2

2(1− ρ2).

COROLLARY. E(Y |X) has the same mean as Y and smaller variance (if
anything) than Y .

Proof. From the Conditional Mean Formula, E[E(Y |X)] = EY . Since
var(Y |X) ≥ 0, EXvar(Y |X) ≥ 0, so

varE[Y |X] ≤ varY

from the Conditional Variance Formula. //

This result has important applications in estimation theory. Suppose we
are to estimate a parameter θ, and are considering a statistic X as a pos-
sible estimator (or basis for an estimator) of θ. We would naturally want
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X to contain all the information on θ contained within the entire sample.
What (if anything) does this mean in precise terms? The answer lies in the
concept of sufficiency (‘data reduction’) - one of the most important con-
tributions to statistics of the great English statistician R. A. (Sir Ronald)
Fisher (1880-1962) in 1920. In the language of sufficiency, the Conditional
Variance Formula is seen as (essentially) the Rao-Blackwell Theorem, a key
result in the area (see the index in your favourite Statistics book if you want
more here).
Regression.

In the bivariate normal, with X = mid-parent height, Y = child’s height,
E(Y |X = x) is linear in x (regression line). In a more detailed analysis, with
U = father’s height, V = mother’s height, Y = child’s height, one would
expect E(Y |U = u, V = v) to be linear in u and v (regression plane), etc.

In an n-variate normal distributionNn(µ, σ), suppose thatX = (X1, · · · , Xn)
is partitioned into X1 := (X1, · · · , Xr)

T and X2 := (Xr+1, · · · , Xn)
T . Let the

corresponding partition of the mean vector and the covariance matrix be

µ =

(
µ1

µ2

)
, σ =

(
σ11 σ12

σ21 σ22

)
,

where EXi = µi, σ11 is the covariance matrix of X1, σ22 that of X2, σ12 = σT
21

the covariance matrix of X1 with X2.
We restrict attention, for simplicity, to the non-singular case, where σ is

positive definite.

LEMMA. If σ is positive definite, so is σ11.

Proof. xTσx > 0 as σ is positive definite. Take x = (x1,0)
T , where x1 has

the same number of components as the order of σ11 [i.e., in matrix language,
so that the partition of x is conformable with those of µ and σ above]. Then
x1σ11x1 > 0 for all x1. This says that σ11 is positive definite, as required. //

THEOREM. The conditional distribution of X2 given X1 = x1 is

X2|X1 = x1 ∼ N(µ2 + σ21σ
−1
11 (x1 − µ1), σ22 − σ21σ

−1
11 σ12).

COROLLARY. The regression of X2 on X1 is linear:

E(X2|X1 = x1) = µ2 + σ21σ
−1
11 (x1 − µ1).
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Proof. Recall that AX,BX are independent iff AσBT = 0, or as σ is
symmetric, BσAT = 0. Now

X1 = AX where A = (I,0),

X2−σ21σ
−1
11 X1 =

(
−σ21σ

−1
11 I

)( X1

X2

)
= BX, where B =

(
−σ21σ

−1
11 I

)
.

Now

BσAT =
(
−σ21σ

−1
11 I

)( σ11 σ12

σ21 σ22

)(
I
0

)
=
(
−σ21σ

−1
11 I

)( σ11

σ21

)

= −σ21σ
−1
11 σ11 + σ21 = 0,

so X1 and X2 − σ21σ
−1
11 X1 are independent. Since both are linear transfor-

mations of X, which is multinormal, both are multinormal. Also,

E(BX) = BEX =
(
−σ21σ

−1
11 I

)( µ1

µ2

)
= µ2 − σ21σ

−1
11 µ1.

To calculate the covariance matrix, introduce C := −σ21σ
−1
11 , so B = (C I),

and recall σT
12 = σ21, so CT = −σ−1

11 σ12:

var(BX) = BσBT =
(
C I

)( σ11 σ12

σ21 σ22

)(
CT

I

)

=
(
C I

)( σ11C
T + σ12

σ21C
T + σ22

)
= Cσ11C

T +Cσ12 + σ21C
T + σ22

= σ21σ
−1
11 σ11σ

−1
11 σ12 − σ21σ

−1
11 σ12 − σ21σ

−1
11 σ12 + σ22

= σ22 − σ21σ
−1
11 σ12.

By independence, the conditional distribution of BX given X1 = AX is
the same as its marginal distribution, which by above isN(µ2−σ21σ

−1
11 µ1, σ22−

σ21σ
−1
11 σ12). So givenX1, X2−σ21σ

−1
11 X1 is N(µ2−σ21σ

−1
11 µ1, σ22−σ21σ

−1
11 σ12).

To pass from the conditional distribution of X2 − σ21σ
−1
11 X1 given X1 to

that of X2 given X1: just add σ21σ
−1
11 X1. Then

X2|X1 ∼ N(µ2 + σ21σ
−1
11 (X1 − µ1), σ22 − σ21σ

−1
11 σ12). //

(here σ22−σ21σ
−1
11 σ12 is called the partial covariance matrix of X2 given X1).
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