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5. CONDITIONING AND REGRESSION
Recall that the conditional density of Y given X = z is

Trix(ylz) = fX,Y(Iay)//fxy(%y)dy

Conditional means.
The conditional mean of Y given X = z is

EY|X =),

a function of z called the regression function (of Y on z). So, if we do not
specify the value x, we get F(Y|X). This is random, because X is random
(until we observe its value, z; then we get the regression function of x as

above). As E(Y]X) is random, we can look at its mean and variance.
Recall (SP, Ch. II)

THEOREM (Conditional Mean Formula). E[E(Y|X)] = EY.

Interpretation. EY takes the random variable Y, and averages out all the
randomness to give a number, FY .

E(Y]X) takes the random variable Y, and averages out all the randomness
in Y NOT accounted for by knowledge of X.

E[E(Y|X)] then averages out the remaining randomness, which IS accounted
for by knowledge of X, to give EY as above.

Ezample: Bivariate normal distribution, N(u1, pio; 02, 03; p), or N(u,0),
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EY|X=2)=mp+p—(—m), so  BY|X)=p+p (X —m)
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So
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E[E(Y]X)] :M2+Pf(EX—M1) =pe=FEY, as  EX =,
1
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As with the bivariate normal, we should keep some concrete instance in
mind as a motivating example, e.g.:
X = incoming score of student [in medical school or university, say], ¥ =
graduating score;
X = child’s height at 2 years (say), Y = child’s eventual adult height,
or X = mid-parent height, Y = child’s adult height, as in Galton’s study.
Recall also (SP, Ch. II)

THEOREM (Conditional Variance Formula).
varY = Exvar(Y|X) +varx E(Y]X).
Interpretation.
varY = total variability in Y,
Exvar(Y|X) = variability in Y not accounted for by knowledge of X,
varx E(Y|X) = variability in Y accounted for by knowledge of X.

Example: the bivariate normal.
YIX=uzis N(m—l—pij(m—pl),ag(l—pz)), varY = o3,
BYIX=a)=pat p (e =), B(YIX)=pat p (X — )
which has variance (poy/o1)*varX = (poy/o1)*0? = p*o3;
var(Y|X =z) = 03(1 — p?), Exvar(Y|X) = o3(1 — p?).

COROLLARY. E(Y|X) has the same mean as Y and smaller variance (if
anything) than Y.

Proof. From the Conditional Mean Formula, E[E(Y|X)] = EY. Since
var(Y|X) > 0, Exvar(Y|X) > 0, so

varEBY|X]| <wvarY
from the Conditional Variance Formula. //
This result has important applications in estimation theory. Suppose we

are to estimate a parameter 6, and are considering a statistic X as a pos-
sible estimator (or basis for an estimator) of #. We would naturally want
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X to contain all the information on # contained within the entire sample.
What (if anything) does this mean in precise terms? The answer lies in the
concept of sufficiency (‘data reduction’) - one of the most important con-
tributions to statistics of the great English statistician R. A. (Sir Ronald)
Fisher (1880-1962) in 1920. In the language of sufficiency, the Conditional
Variance Formula is seen as (essentially) the Rao-Blackwell Theorem, a key
result in the area (see the index in your favourite Statistics book if you want
more here).

Regression.

In the bivariate normal, with X = mid-parent height, Y = child’s height,
E(Y|X = z) is linear in z (regression line). In a more detailed analysis, with
U = father’s height, V' = mother’s height, Y = child’s height, one would
expect E(Y|U = u,V = v) to be linear in w and v (regression plane), etc.

In an n-variate normal distribution N,,(p, o), suppose that X = (X1,---, X},)
is partitioned into X; := (X1,--+, X,)T and Xy := (X,41,- -+, X,,)T. Let the
corresponding partition of the mean vector and the covariance matrix be

_(Nl) _(Ull 012>
H’_ 70_ )
M2 021 022

where EX; = p;, 011 is the covariance matrix of Xy, o9 that of Xy, 015 = 01,
the covariance matrix of X; with X,.

We restrict attention, for simplicity, to the non-singular case, where o is
positive definite.

LEMMA. If ¢ is positive definite, so is o11.

Proof. xTox > 0 as o is positive definite. Take x = (x1,0)?, where x; has
the same number of components as the order of o1; [i.e., in matrix language,
so that the partition of x is conformable with those of ;1 and ¢ above]. Then
x1011X1 > 0 for all x;. This says that oy, is positive definite, as required. //

THEOREM. The conditional distribution of X, given X; = x; is
XXy =x1 ~ N(p2 4 021017 (%1 — pu1), 022 — 021071 012).
COROLLARY. The regression of Xy on X; is linear:
E(Xo|Xy =x1) = pi2 + 021077 (X1 — 1)
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Proof. Recall that AX,BX are independent iff AcB? = 0, or as ¢ is
symmetric, BcAT = 0. Now

X, = AX where A = (I,0),

X1

Xo—091071 X1 = ( —opog 1 ) ( X, > = BX, where B = ( —opoyg 1 )

Now
T _( _ -1 011 012 I _( _ -1 011
BoA —( 021071 I)((721 022><0>—< 021071 I><021>
= —09101,'011 + 091 = 0,

so X; and Xy — 0'210'1_11X1 are independent. Since both are linear transfor-
mations of X, which is multinormal, both are multinormal. Also,

E(BX) =BEX = ( —ozn07 T) ( m ) = pz — 007 [0

2
To calculate the covariance matrix, introduce C := —oy107;', so B = (C I,
and recall oL, = 091, so CT = —o17' 012
T
U(IT(BX):BO'BT:(C I)(JH o12 ) ( C )
021 022 I

T
= ( C1I ) ( OllC T o > = CUllCT+C0'12+O'21CT+022

T
0'210 +O’22
o -1 1 -1 1
= 091011 011011 012 — 0210711 012 — 0210717 012 + 022
_ -1
= 0922 — 0210771 012

By independence, the conditional distribution of BX given X; = AX is
the same as its marginal distribution, which by above is N (Mz—azwﬁl 1, 09—
091011 012). So given Xy, Xo— 09101 X1 is N (fig— 001077 11, 02 — 091017 012).

To pass from the conditional distribution of Xy — 02101_11X1 given X; to
that of Xy given X;: just add 0'210'1_11X1. Then

Xo|Xq ~ N(p2 + Uzlgﬂl(xl — 1), 022 — 0210f11012)- //

(here 99 — 02101_11012 is called the partial covariance matriz of X5 given X).



