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It was shown by M. S. BARTLETT in 1946 (see e.g. Diggle 2.5) that for
large n and τ non-zero,

r(τ) ∼ N(0, 1/n) :

r(τ) is approximately normal with mean 0 and variance 1/n. So as
√
nr(τ) ∼

Φ := N(0, 1), the standard normal distribution, which takes values > 1.96 ∼
2 in modulus with probability 5%, only values of r(τ) with

|r(τ)| ≥ 1.96/
√
n ∼ 2/

√
n

differ significantly from zero.

3. AUTOREGRESSIVE PROCESSES, AR(1)
Recall that in a linear regression model, the dependent variable Y de-

pends in a linear way on an independent variable X (or X1, X2, X3, · · ·, or
X,X2, X3, · · ·), with an error structure or noise process also present.

In a TS model, the current value Xt depends in a linear way on the pre-
vious value Xt−1 (or on the p previous values Xt−1, Xt−2, · · · , Xt−p), again
plus noise.
First-order case: AR(1). Suppose that our model is

Xt = ϕXt−1 +m+ ϵt, ((ϵt) WN)

for t an integer (positive, negative or zero), where (ϵt) is a white noise process
WN(σ2). Take means and use EXt = µ, Eϵt = 0:

µ = ϕµ+m.

So if ϕ ̸= 1,
µ = m/(1− ϕ),

and if ϕ = 1, then m = 0.
For simplicity, centre at means:

Xt − µ = ϕ(Xt−1 − µ) +m− µ+ ϕµ+ ϵt

= ϕ(Xt−1 − µ) +m− µ(1− ϕ) + ϵt

= ϕ(Xt−1 − µ) + ϵt,
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by above. Centring at means (i.e. replacing Xt − µ by Xt) for simplicity, we
have

Xt = ϕXt−1 + ϵt, (∗)

a simpler model, with all means zero. This is called an autoregressive model
of order one, AR(1). For, it has the form of a regression model, with Xt−1 as
the ‘dependent variable’ and Xt as the ‘independent variable’: Xt is regressed
on the previous X-value (earlier in time), so the process (Xt) is regressed on
itself (Greek: autos = self).

Using (∗) recursively,

Xt = ϕ(ϕXt−2 + ϵt−1) + ϵt

= ϕ2Xt−2 + ϕϵt−1 + ϵt

= · · ·
= ϕnXt−n +

∑n−1

i=0
ϕiϵt−1.

If |ϕ| < 1, this suggests that the first term on the RHS → 0 as n → ∞,
giving Xt =

∑∞
0 ϕiϵt−i. This is true, provided we interpret the convergence

of the infinite series on RHS suitably. We have

n−1∑
1

ϕiϵt−i)
2 = E[(ϕnXt−n)

2] = ϕ2nE[X2
t−n] = ϕ2nγ0,

where γ0 = varXt for all t. Since |ϕ| < 1, ϕ2n → 0 as n → ∞, so RHS → 0
as n → ∞. So LHS → 0 as n → ∞. This says that∑n

0
ϕiϵt−i → Xt (n → ∞),

or ∑∞
0
ϕiϵt−i = Xt,

in mean square (or, in L2).
Interpreting convergence in this mean-square sense,

Xt =
∑∞

0
ϕiϵt−i (∗∗)

expresses Xt on LHS as a weighted sum of ϵt, ϵt−1, ϵt−2, · · · on RHS. This
weighted sum resembles an average (although the weights sum to 1/(1− ϕ),
not 1 as is usual for an average), and the set (ϵt, ϵt−1, ϵt−2, · · ·) of white-noise
variables being averaged over moves with t; there are infinitely many of them.
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Hence (∗∗) is called the infinite moving-average representation of the AR(1)
process (∗). Note that the further we go back in time, the more the ϵt−i are
down-weighted by the geometrically decreasing weights ϕi.
Autocovariance of AR(1). Since ϵt+1 is independent of (or, using the weaker
definition of white noise, uncorrelated with) ϵt, ϵt−1, ϵt−2, · · ·, it is indepen-
dent of (or uncorrelated with) the linear combination Xt =

∑∞
0 ϕiϵt−i of

them. So ϵt+1 is uncorrelated with Xt, Xt−1, · · ·. This says that Xs and ϵt
are uncorrelated for s < t. Since all means are zero:

E(Xsϵt) = 0 (s < t).

Square both sides of (∗) and take expectations:

E[X2
t ] = ϕ2E[X2

t−1] + 2ϕE[Xt−1ϵt−1] + E[ϵ2t ].

The second term on RHS is zero by above; E[X2
t ] = varXt = γ0 for all t,

and E[ϵ2t ] = varϵt = σ2 for all t. So

γ0 = ϕ2γ0 + σ2 :

γ0 = σ2/(1− ϕ2),

identifying γ0 in terms of the WN variance σ2 and the weight ϕ.
Multiply (∗) by Xt−τ (τ ≥ 1) and take expectations:

γτ = ϕγτ−1

(since ϵt on RHS is uncorrelated with Xt−τ ). Using this repeatedly,

γτ = ϕγτ−1 = ϕ2γτ−2 = · · · = ϕτγ0 = ϕτσ2/(1− ϕ2) :

γτ = σ2.ϕτ/(1− ϕ2) (τ ≥ 0),

giving the autocovariance of an AR(1) process as geometrically decreasing.
Passing to the autocorrelation ρτ = γτ/γ0: ρτ = ϕτ for τ ≥ 0). Note
that ρτ = ρ−τ (since two random variables have the same covariance and
correlation either way round), so we can re-write this as

ρτ = ϕ|τ |.

Recall |ϕ| < 1 here. Two cases are worth distinguishing.
Case 1: 0 ≤ ϕ < 1. Here the graph of ρτ is a geometric series with non-
negative common ratio. Since the sample autocorrelation rτ is an approx-
imation to ρτ , the correlogram (graph of rτ ) is an approximation to this.
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Successive values of Xt are positively correlated: positive values of Xt tend
to be succeeded by positive values, and similarly negative by negative.
Case 2: −1 < ϕ < 0. Here the graph is again a geometric series, but one
that oscillates in sign, as well as damping down geometrically. Successive
values of Xt are negatively correlated: positive values tend to be succeeded
by negative values, and vice versa.

To summarise: the signature of an AR(1) process is a correlogram that
looks like an approximation to a geometric series, as in Case 1 or 2 above,
depending on the sign of ϕ.
The Lag Operator.

Before proceeding, we introduce some useful notation and terminology.
The lag operator, or backward shift operator, operates on sequences by shift-
ing the index back in time by one. We write it as B:

BXt = Xt−1,

(though L - L for lag - is also used). Repeating this, B2 shifts back in time
by two, B2Xt = Xt−2, and generally

BnXt = Xt−n (n = 0, 1, 2, · · ·)

(B0 = I is the identity operator: B0Xt = IXt = Xt).
We can re-write (∗) in this notation as

Xt = ϕBXt + ϵt : (1− ϕB)Xt = ϵt.

Formally, this suggests

Xt = (1− ϕB)−1ϵt = (1 + ϕB + ϕ2B2 + · · ·+ ϕiBi + · · ·)ϵt
= 1 + ϕϵt−1 + ϕ2ϵt−2 + · · ·+ ϕiϵt−i + · · ·
=

∑∞
0
ϕiϵt−i,

which is (∗∗) as above, provided that the operator equation

(1− ϕB)−1 =
∑∞

i=0
ϕiBi

makes sense. It does make sense, with convergence on the RHS interpreted
in the mean-square sense as above, if |ϕ| < 1.
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