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It was shown by M. S. BARTLETT in 1946 (see e.g. Diggle 2.5) that for
large n and 7 non-zero,

r(r) ~ N(0,1/n) :

r(7) is approximately normal with mean 0 and variance 1/n. So as \/nr(7) ~
¢ := N(0,1), the standard normal distribution, which takes values > 1.96 ~
2 in modulus with probability 5%, only values of r(7) with

Ir(7)] > 196/ ~ 2/

differ significantly from zero.

3. AUTOREGRESSIVE PROCESSES, AR(1)

Recall that in a linear regression model, the dependent variable Y de-
pends in a linear way on an independent variable X (or Xi, X5, X3, -+, or
X, X% X3 ...), with an error structure or noise process also present.

In a TS model, the current value X; depends in a linear way on the pre-
vious value X;_; (or on the p previous values X;_ 1, Xt o, -+, X;—,), again
plus noise.

First-order case: AR(1). Suppose that our model is

Xy = oXi 1 +m+ e, ((e) WN)

for ¢ an integer (positive, negative or zero), where (¢;) is a white noise process
W N(c?). Take means and use EX; = u, Fe; = 0:

p= dp+m.

So if ¢ # 1,
and if ¢ = 1, then m = 0.

For simplicity, centre at means:

Xi—p = (Xin—p)+m—p+ou+e
O( X1 —p)+m—p(l—0) +&
= ¢(Xt—1 - lu) + €t,



by above. Centring at means (i.e. replacing X; — p by X;) for simplicity, we
have
Xi=0Xi 1+ &, (*)

a simpler model, with all means zero. This is called an autoregressive model
of order one, AR(1). For, it has the form of a regression model, with X;_; as
the ‘dependent variable’ and X; as the ‘independent variable’: X, is regressed
on the previous X-value (earlier in time), so the process (X;) is regressed on
itself (Greek: autos = self).

Using (x) recursively,

Xy = ¢(0Xia+ 1)+ e
= ¢*X; o+ de 1+ &

n—1
= ¢"Xin+ Zi:O Qe

If |¢| < 1, this suggests that the first term on the RHS — 0 as n — oo,
giving X; = Y °¢’¢; ;. This is true, provided we interpret the convergence
of the infinite series on RHS suitably. We have

n—1

S dei)’ = El(¢"Xi-n)?] = 6" E[X] ] = ™",

1

where vy = varX; for all t. Since |¢| < 1, ¢*" — 0 as n — 0o, so RHS — 0
as n — o0. So LHS — 0 as n — oco. This says that

Zggbiet_i — X, (n — 00),

or
0o
Zo Qe = Xq,

in mean square (or, in Ly).
Interpreting convergence in this mean-square sense,

Xt = Z;O¢i€t_i (**)
expresses X; on LHS as a weighted sum of €, €, 1,€_9,--- on RHS. This
weighted sum resembles an average (although the weights sum to 1/(1 — ¢),

not 1 as is usual for an average), and the set (€, €;_1, €9, - - +) of white-noise
variables being averaged over moves with t; there are infinitely many of them.
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Hence (xx) is called the infinite moving-average representation of the AR(1)
process (x). Note that the further we go back in time, the more the ¢,_; are
down-weighted by the geometrically decreasing weights ¢°.

Autocovariance of AR(1). Since €4, is independent of (or, using the weaker

definition of white noise, uncorrelated with) €, €, _1,€_9,- -, it is indepen-
dent of (or uncorrelated with) the linear combination X; = ¢’ of
them. So €41 is uncorrelated with X;, X; 1,---. This says that X and ¢

are uncorrelated for s < ¢. Since all means are zero:
E(Xse) =0 (s <t).
Square both sides of (x) and take expectations:
E[X}] = ¢"B[X}\] + 20E[Xi16-1] + Ele}].

The second term on RHS is zero by above; E[X?] = varX; = ~y for all ¢,
and E[e?] = vare; = o2 for all t. So

Yo = ¢*0 + 07
% =0%/(1-¢%),
identifying o in terms of the WN variance o2 and the weight ¢.
Multiply (x) by X; . (7 > 1) and take expectations:
Yr = ¢7T—1
(since ¢, on RHS is uncorrelated with X;_.). Using this repeatedly,

Vr = ¢77’—1 = ¢277'—2 == ¢T'VO = ¢T02/(1 - ¢2) :

Vr 202-¢T/(1_¢2) (T > 0)7
giving the autocovariance of an AR(1) process as geometrically decreasing.
Passing to the autocorrelation p, = ~v;/v: pr = ¢" for 7 > 0). Note
that p, = p_, (since two random variables have the same covariance and
correlation either way round), so we can re-write this as

Pr = gb‘T'

Recall |¢| < 1 here. Two cases are worth distinguishing.
Case 1: 0 < ¢ < 1. Here the graph of p; is a geometric series with non-
negative common ratio. Since the sample autocorrelation r, is an approx-
imation to p,, the correlogram (graph of r;) is an approximation to this.
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Successive values of X; are positively correlated: positive values of X; tend
to be succeeded by positive values, and similarly negative by negative.

Case 2. —1 < ¢ < 0. Here the graph is again a geometric series, but one
that oscillates in sign, as well as damping down geometrically. Successive
values of X; are negatively correlated: positive values tend to be succeeded
by negative values, and vice versa.

To summarise: the signature of an AR(1) process is a correlogram that
looks like an approximation to a geometric series, as in Case 1 or 2 above,
depending on the sign of ¢.

The Lag Operator.

Before proceeding, we introduce some useful notation and terminology.
The lag operator, or backward shift operator, operates on sequences by shift-
ing the index back in time by one. We write it as B:

BX; = X1,

(though L - L for lag - is also used). Repeating this, B? shifts back in time
by two, B?X; = X,_,, and generally

BnXt = thn (n = 0, 1, 2, < )

(B° = I is the identity operator: B°X; = I X; = X;).
We can re-write (x) in this notation as

Xt = gbBXt + € : (1 - gbB)Xt = €.
Formally, this suggests
X;=(1—-¢B) ¢ = (14+¢B+¢*B*+---+¢'B" +-- )¢
= 1+¢ag 1+’ ot -+ e it -
= Z;O¢Zet—i7
which is (xx) as above, provided that the operator equation
—1 _ N i
(1-6B)" =¥ &'B

makes sense. It does make sense, with convergence on the RHS interpreted
in the mean-square sense as above, if |¢| < 1.



