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4. GENERAL AUTOREGRESSIVE PROCESSES, AR(p).
Again working with the zero-mean case for simplicity, the extension of

the above to p parameters is the model

Xt = ϕ1Xt−1 + ϕ2Xt−2 + · · ·+ ϕpXt−p + ϵt, (∗)

with (ϵt) WN as before. Since Xt−i = BiXt, we may re-write this as

Xt − ϕ1BXt − · · · − ϕpB
pXt = ϵt.

Write
ϕ(λ) := 1− ϕλ− · · · − ϕpλ

p

for the pth order polynomial here. Then formally,

ϕ(B)Xt = ϵt.

Formally again,
Xt = ϕ(B)−1ϵt,

so if we expand 1/ϕ(λ) in a power series as

1/ϕ(λ) ≡ 1 + β1λ+ · · ·+ βnλ
n + · · · ,

Xt =
∑∞

i=0
βiB

iϵt =
∑∞

0
βiϵt−i.

This is the analogue of Xt =
∑∞

0 ϕ
iϵt−i for AR(1), and shows that Xt can

again be represented as an infinite moving-average process - or linear process
(Xt is an (infinite) linear combination of the ϵt−i).

Multiply (∗) through byXt−k and take expectations. SinceE[Xt−kXt−i] =
ρ(|k − i|) = ρ(k − i), this gives

ρ(k) = ϕ1ρ(k − 1) + · · ·+ ϕpρ(k − p) (k > 0). (YW )

These are the Yule-Walker equations, due to G. Udny Yule (1871-1951) in
1926 and Sir Gilbert Walker (1868-1958) in193.

The Yule-Walker equations (YW) have the form of a difference equation
of order p. The characteristic polynomial of this difference equation is

λp − ϕ1λ
p−1 − · · · − ϕp = 0,
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which by above is
ϕ(1/λ) = 0.

If λ1, · · · , λp are the roots of this characteristic polynomial, the trial solution
ρ(k) = λk is a solution if and only if λ is one of the roots λi. Since the
equation is linear,

ρ(k) = c1λ
k
1 + · · ·+ cpλ

k
p

(for k ≥ 0, and use ρ(−k) = ρ(k) for k < 0) is a solution for all choices of
constants c1, · · · , cp. This is the general solution of (YW) if all the roots λi
are distinct, with appropriate modifications for repeated roots (if λ1 = λ2,
use c1λ

k
1 + c2kλ

k
1, etc.).

Now |ρ(k)| ≤ 1 for all k (as ρ(.) is a correlation coefficient), and this is
only possible if

|λi| ≤ 1 (i = 1, · · · , p)
- that is, all the roots lie inside (or on) the unit circle. This happens (as our
polynomial is ϕ(1/λ)) if and only if all the roots of the polynomial ϕ(λ) lie
outside (or on) the unit circle. Then |ρ(k)| ≤ 1 for all k, and when there are
no roots of unit modulus, also ρ(k) → 0 as k → ∞ - that is, the influence of
the remote past tends to zero, as it should. We shall see below that this is
also the condition for the AR(p) process above to be stationary.
Example of an AR(2) process.

Xt =
1

3
Xt−1 +

2

9
Xt−2 + ϵt, (ϵt) WN. (1)

Moving-average representation. Let the infinite moving-average representa-
tion of (Xt) be

Xt =
∑∞

i=0
ψiϵt−i. (2)

Substitute (2) into (1):

∑∞
0
ψiϵt−i =

1

3

∑∞
0
ψiϵt−i−1 +

2

9

∑∞
0
ψiϵt−2−i + ϵt

=
1

3

∑∞
1
ψi−1ϵt−i +

2

9

∑∞
2
ψi−2ϵt−i + ϵt.

Equate coefficients of ϵt−i:
i = 0 gives ψ0 = 1; i = 1 gives ψ1 =

1
3
ψ0 = 1/3; i ≥ 2 gives

ψi =
1

3
ψi−1 +

2

9
ψi−2.
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This is again a difference equation, which we solve as above. The character-
istic polynomial is

λ2 − 1

3
λ− 2

9
= 0, or (λ− 2

3
)(λ+

1

3
) = 0,

with roots λ1 = 2/3 and λ2 = −l/3. The general solution of the difference
equation is thus ψi = c1λ

i
1 + c2λ

i
2 = c1(2/3)

i + c2(−1/3)i. We can find c1, c2
from the values of ψ0, ψ1, found above:
i = 0 gives c1 + c2 = 0, or c2 = 1− c1.
i = 1 gives c1.(2/3)+(1−c1)(−1/3) = ψ1 = 1/3: 2c1−(1−c1) = 1: c1 = 2/3,
c2 = 1/3. So

ψi =
2

3
(
2

3
)i +

1

3
(
−1

3
)i = (

2

3
)i+1 − (

−1

3
)i+1,

and

Xt =
∑∞

0
[(
2

3
)i+1 − (

−1

3
)i+1]ϵt−i,

giving the moving-average representation, as required.
Autocovariance. Recall the Yule-Walker equations

ρ(k) = ϕ1ρ(k − 1) + ϕ2ρ(k − 2)

for AR(2). As before,
ρ(k) = aλk1 + bλk2

for some constants a, b. Taking k = 0 and using ρ(0) = 1 gives a + b = 1:
b = 1− a. So here,

ρ(k) = a(2/3)k + (1− a)(−1/3)k.

Taking k = 1 in the Yule-Walker equations gives

ρ(1) = ϕ1ρ(0) + ϕ2ρ(−1),

which as ρ(0) = 1 and ρ(−1) = ρ(1) gives

ρ(1) = ϕ1/(1− ϕ2).

As here ϕ1 = 1/3 and ϕ2 = 2/9, this gives ρ(1) = 3/7. We can now use this
and the above expression for ρ(k) to find a: taking k = 1 and equating,

ρ(1) = 3/7 = a.(2/3) + (1− a).(−1/3).
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That is,

(
3

7
+

1

3
) = a.(

2

3
+

1

3
) = a :

a = (9 + 7)/21 = 16/21. Thus

ρ(k) =
16

21
(
2

3
)k +

5

21
(
−1

3
)k.

Note. For large k, the first term dominates, and

ρk ∼ 16

21
.(
2

3
)k (k → ∞).

Variance. For the variance: square both sides of (2) and take expectations:

γ0 = varXt = E[
∑∞

i=0
ψiϵt−i.

∑∞
j=0
ψjϵt−j] =

∑∑∞
i,j=0

ψiψjE[ϵt−iϵt−j].

But E[ϵt−iϵt−j] = 0 unless i = j, when it is σ2 = varϵt−i. So

γ0 =
∑∞

i=0
ψ2
i = σ2.

∑∞
0
[(
2

3
)i+1 − (

−1

3
)i+1]2.

The constant on the RHS is a sum of geometric series, on squaring out [...]2:∑∞
0
(4/9)i+1 − 2

∑∞
0
(−2/9)i+1 +

∑∞
0
(1/9)i+1,

which sums to

(4/9

1− (4/9)
− 2.

(−2/9)

1 + (2/9)
+

1/9

1− (1/9)
=

4

5
+

4

11
+

1

8
=

352 + 160 + 55

440
=

567

440
.

So
varXt = γ0 = σ2.567/440

. Similarly,

γt = cov(Xt, Xt−τ ) = E[
∑∞

i=0
ψiϵt−i.

∑∞
j=0
ψjϵt−j

=
∑∑∞

i,j=0
ψiψjE[ϵt−iϵt−τ−j].

On the RHS, E[.] = σ2 if i = τ + j, zero otherwise. So for τ ≥ 0,

γτ = σ2.
∑∞

j=0
ψτ+jψj = σ2

∑∞
j=0

[(
2

3
)j+1−(−−1

3
)j+1].[(

2

3
)τ+j+1−(−−1

3
)τ+j+1].
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Again, the constant on RHS is a sum of geometric series,

(2/3)τ .
4/9

1− (4/9)
− (−1/3)τ .

(−2/9)

1 + (2/9)
− (2/3)τ .

(−2/9)

1 + (2/9)
+(1/3)τ .

1/9

1− (1/9)
,

giving

4

5
.(
2

3
)τ +

2

11
.(−1

3
)τ +

2

11
.(
2

3
)τ +

1

8
.(−1

3
)τ = (

2

3
)τ .[

4

5
+

2

11
] + (−1

3
)τ .[

2

11
+

1

8
] :

γτ = σ2.(
54

55
.(
2

3
)τ +

27

88
.(−1

3
)τ =

σ2

440
.(8.54.(2/3)τ + 5.27.(−1/3)τ ).

So as γ0 = σ2.567/440 and 567 = 81.7,

ρτ = γτ/γ0 =
8.54

81.7
.(
2

3
)τ +

5.27

81.7
.(−1

3
)τ ,

and as 27/81 = 1/3, 54/81 = 2/3, we finally get the autocorrelation function
of this AR(2) model as

ρτ =
16

21
.(
2

3
)τ +

5

21
.(−1

3
)τ .

Check. (a) ρ0 = 16/21 + 5/21 = 1,
(b) We already know ρτ = a.(2/3)τ + b.(−1/3)τ for some a, b.
Note. For large τ , the first term dominates, and

ρτ ∼ 16

21
.(
2

3
)τ (τ → ∞) :

ρτ is approximately geometrically decreasing for large τ .
AR(p) processes (continued). We return to the general case. Just as in the
AR(2) example above, if the AR(p) process has a moving-average represen-
tation

Xt =
∑∞

i=0
ψiϵt−i,

then if σ2 = varϵt,
varXt = σ2.

∑∞
i=0
ψ2
i .

The condition ∑∞
i=0
ψ2
i <∞

(in words: (ψi) is square-summable, or is in L2) is necessary and sufficient
for
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(i) varXt <∞;
(ii) the series

∑
ψiϵt−i in the moving-average representation to be convergent

in mean square – or, in L2.
So if we interpret convergence in the mean-square sense,

∑
ψ2
i < ∞ is the

necessary and sufficient condition (NASC) for the moving-average represen-
tation of Xt to exist. Since

∑
ψiϵt−i is (when convergent) stationary (because

(ϵt) is stationary: if
∑
ψ2
i < ∞, then Xt is stationary. The converse is also

true; see Section 5 below.
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