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4. GENERAL AUTOREGRESSIVE PROCESSES, AR(p).
Again working with the zero-mean case for simplicity, the extension of
the above to p parameters is the model

Xi =01 X1+ G Xy o+ + 0p Xy + €, (%)

with (€;) WN as before. Since X;_; = B'X;, we may re-write this as

Xi— o1 BXy — - — ¢poXt = €.
Write
BN = 1= A= — G\
for the pth order polynomial here. Then formally,
¢(B)Xt = €.
Formally again,
X; = ¢(B) e,

so if we expand 1/¢(\) in a power series as
oA =14+ BA+- -+ B A"+,

Xy = Zzoﬁz‘BiEt = Zzoﬁzft—i-

This is the analogue of X; = Y °¢'¢;_; for AR(1), and shows that X; can
again be represented as an infinite moving-average process - or linear process
(X, is an (infinite) linear combination of the €,_;).

Multiply (%) through by X;_ and take expectations. Since E[X;_;X;_;] =
p(lk —1]) = p(k — ©), this gives

p(k) = ¢1p(k = 1)+ -+ ¢pp(k —p)  (k>0). Yw)

These are the Yule-Walker equations, due to G. Udny Yule (1871-1951) in
1926 and Sir Gilbert Walker (1868-1958) in193.

The Yule-Walker equations (YW) have the form of a difference equation
of order p. The characteristic polynomial of this difference equation is

N =g N =, =0,
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which by above is

6(1/) = 0.
If Ai,---, A, are the roots of this characteristic polynomial, the trial solution
p(k) = A* is a solution if and only if X\ is one of the roots ;. Since the

equation is linear,
p(k) = 01)\’f + 4+ cp)\’;
(for £ > 0, and use p(—k) = p(k) for k < 0) is a solution for all choices of
constants ¢y, - - -, c,. This is the general solution of (YW) if all the roots A,
are distinct, with appropriate modifications for repeated roots (if A\ = Ao,
use i AF + ek A} ete.).
Now |p(k)| < 1 for all k (as p(.) is a correlation coefficient), and this is

only possible if
ANf<1 (i=1,---.p)

- that is, all the roots lie inside (or on) the unit circle. This happens (as our
polynomial is ¢(1/)\)) if and only if all the roots of the polynomial ¢p(N\) lie
outside (or on) the unit circle. Then |p(k)| <1 for all k, and when there are
no roots of unit modulus, also p(k) — 0 as k — oo - that is, the influence of
the remote past tends to zero, as it should. We shall see below that this is
also the condition for the AR(p) process above to be stationary.

Example of an AR(2) process.

1 2
Xt = gthl + §Xt72 + €, (Gt) WN. (1)

Moving-average representation. Let the infinite moving-average representa-
tion of (X;) be
Xi = Zizoiﬂiﬁtﬂ‘- (2>
Substitute (2) into (1):
o0 [ 2 o0
Zo i€y = gzo VYi€s i1 + 520 Vi€ o i+ €&
J [N 2 o0
= 521 Vi 1€ + §ZQ Vi o€ + €.

Equate coefficients of €,_;:
i =0 gives 1y = 1; i = 1 gives 1y = 510 = 1/3; i > 2 gives

1 2
P = §¢i—1 + 5%‘—2'
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This is again a difference equation, which we solve as above. The character-
istic polynomial is
1 2 2 1

M—-A-2=0 A—=-)A+2)=0
with roots \; = 2/3 and Ay = —[/3. The general solution of the difference
equation is thus ¥; = ]\ + 2y = ¢1(2/3)" + c2(—1/3)". We can find ¢y, ¢y
from the values of v, 11, found above:
1=0givescy +co=0,0rco=1—¢y.
i=1gives ¢1.(2/3)+(1—c1)(—1/3) =11 =1/3: 2c1 —(1—¢1) = 1: ¢ = 2/3,
s =1/3. So

22y L=hi 2y 2l
and 5 o
Xi = Z?[(g)zﬂ - (?)Hl]et—z‘a

giving the moving-average representation, as required.
Autocovariance. Recall the Yule-Walker equations

p(k) = ¢1p(k — 1) + dap(k — 2)

for AR(2). As before,
p(k) = a\¥ 4+ bAS

for some constants a,b. Taking k = 0 and using p(0) = 1 gives a +b = 1:
b=1—a. So here,

p(k) = a(2/3)" + (1 —a)(=1/3)".
Taking k = 1 in the Yule-Walker equations gives
p(1) = ¢1p(0) + g2p(—1),
which as p(0) = 1 and p(—1) = p(1) gives
p(1) = ¢1/(1 = ¢2).

As here ¢ = 1/3 and ¢y = 2/9, this gives p(1) = 3/7. We can now use this
and the above expression for p(k) to find a: taking k = 1 and equating,

p(1)=3/7T=a.(2/3)+ (1 —a).(—1/3).
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That is,

a=(9+7)/21 = 16/21. Thus
16,2, 5 —1

p(k) = ﬁ(§> + ﬁ(?)k-

Note. For large k, the first term dominates, and

16 2
AN -
P 21.(3) (k — o0).

Variance. For the variance: square both sides of (2) and take expectations:
Yo =varX, =B 7 ey eyl = D03 it Bleiei].

But Ele;—i€e—;] = 0 unless i = j, when it is 02 = vare, ;. So

-1
2 H—l i+192
The constant on the RHS is a sum of geometric series, on squaring out [...]%:

Z 4/9 i+1 Z 2/9 H—l 4 Z 1/9 H—l
which sums to

(4/9 (—2/9) 1/9 4 4 1 3524160455 567

1—(4/9) T1+(2/9) 1-(1/9) TR 440 4407
So

varX; = o = 0°.567/440
Similarly,
Tt = COU(Xta Xt—T) = E[Zzo¢i€t—i-2;’;o¢j€t—j
On the RHS, E[.] = 02 if i = 7 + j, zero otherwise. So for 7 > 0,

v = 02'2;0¢T+j¢j _ 022;‘;0[(5)]4—1_(_?)j-ﬁ-l].[(g)ﬁ-jﬁ-l_(__31)7-&-]'4-1].
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Again, the constant on RHS is a sum of geometric series,
4/9
1—(4/9)

1/9

(2/3)T 'mv

(13— 218 e (13

giving

L)+ (=) e () (=) = O g+ gl (—3) [ + 5
=Gy Ty = T

So as vy = 02.567/440 and 567 = 81.7,

854 2 . 527, 1.,
/OT_'VT/'YO— m(g) +8177(—§) s
and as 27/81 = 1/3, 54/81 = 2/3, we finally get the autocorrelation function

of this AR(2) model as

8.54.(2/3) + 5.27.(—1/3)").

62, 5, 1.
Check. (a) po = 16/21 +5/21 = 1,
(b) We already know p, = a.(2/3)" + b.(—1/3)" for some a, b.
Note. For large 7, the first term dominates, and

16 2., .
Pr ~ ﬁ-(g) (1 —=00):

Pr

pr is approximately geometrically decreasing for large 7.

AR(p) processes (continued). We return to the general case. Just as in the
AR(2) example above, if the AR(p) process has a moving-average represen-
tation

Xy = Zzo%ﬁ—i,
then if 02 = vare,,
varX, = UQ.ZZO@Z)?.
The condition

YLl < o0

(in words: (¢;) is square-summable, or is in Lo) is necessary and sufficient
for



(i) varX; < oc;

(ii) the series Y 1;€;—; in the moving-average representation to be convergent
in mean square — or, in L.

So if we interpret convergence in the mean-square sense, . 1? < oo is the
necessary and sufficient condition (NASC) for the moving-average represen-
tation of X to exist. Since 3 1);€,_; is (when convergent) stationary (because
(€;) is stationary: if 3" ? < oo, then X, is stationary. The converse is also
true; see Section 5 below.



