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5. CONDITION FOR STATIONARITY
We return to the general case. Just as in the AR(2) example above, if the
AR(p) process has a moving-average representation

Xt =
∑∞

i=0
ψiϵt−i,

then if σ2 = varϵt,
varXt = σ2

∑∞
i=0
ϕ2
i .

The condition ∑∞
i=0
ϕ2
i <∞

((ϕi) is square-summable, or is in L2) is necessary and sufficient for
(i) varXt <∞;
(ii) the series

∑
ϕiϵt−i in the moving-average representation to be convergent

in mean square – or, in L2. So if we interpret convergence in the mean-square
sense,

∑
ϕ2
i < ∞ is the necessary and sufficient condition (NASC) for the

moving-average representation of Xt to exist. Since
∑
ϕiϵt−i is (when con-

vergent) stationary (because (ϵt) is stationary):
if

∑
ϕ2
i <∞, then (Xt) is stationary. The converse is also true, giving:

THEOREM (Condition for Stationarity). The following are equiva-
lent:
(i) The parameters ϕ1, · · · , ϕp in the AR(p) model

Xt = ϕ1Xt−1 + · · ·+ ϕpXt−p + ϵt, (ϵt) WN(σ2) (∗)

define a stationary process (Xt);
(ii) The roots of the polynomial

ϕ(λ) := ϕpλ
p + · · ·+ ϕ1λ− 1 = 0

lie outside the unit disc in the complex λ-plane;
(iii) Xt has the moving-average representation

Xt =
∑∞

i=0
ϕiϵt−i

with ∑∞
i=0
ϕ2
i <∞.
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Proof. Substituting the moving-average representation into (∗),∑∞
i=0
ϕiϵt−i =

∑p

k=1
ϕk

∑∞
i=0
ψiϵt−k−i + ϵt

=
∑p

k=1
ϕk

∑∞
i=k
ϕi−kϵt−i + ϵt

=
∑∞

i=1
(
∑min(i,p)

k=1
ϕkϕi−k)ϵt−i + ϵt.

Equating coefficients of ϵt−i, we obtain the difference equation

ϕi =
∑p

k=1
ϕkϕi−k (i ≥ p)

(with similar equations for i = 0, 1, · · · , p − 1, which provide starting-values
for the difference equation above). The difference equation, of order p, has
general solution

ϕi =
∑p

k=1
ckλ

i
k,

where λ1, · · · , λp are the roots of the characteristic polynomial

λp − ϕ1λ
p−1 − · · · − ϕp−1λ− ϕp = 0

(with appropriate modifications in the case of repeated roots, as before).
[Check: if ϕi = λi is a trial solution of the difference equation, λi =

∑p
1ϕkλ

i−k.
Multiply through by λp−i: λp =

∑p
1ϕkλ

p−k.] Now as ϕi =
∑p

1ckλ
i
k and

|λik| → ∞, = 1 or → 0 as i → ∞ according as |λk| > 1, = 1 or < 1,∑
ϕ2
i < ∞ iff each |λk| < 1, i.e. each root of λp − ϕ1λ

p−1 − · · · − ϕp = 0 is
inside the unit disk, i.e. each root of

ϕ(λ) = ϕpλ
p + ϕp−1λ

p−1 + · · ·+ ϕ1λ− 1 = 0

is outside the unit disk. This is all that remained to be proved. //

In the stationary case, we thus have

γt = cov(Xt, Xt+τ ) = σ2
∑∞

i=0
ϕiϕi+τ ,

with
∑
ϕ2
i <∞ and ϕi =

∑p
k=1ckλ

i
k, |λi| < 1. If λ1 (say) is the root of largest

modulus, ϕi ∼ c1λ
i
1 for large i, and ϕiϕi+τ ∼ c21λ

τ+2i
1 . So for large τ , we can

expect
γτ ∼ σ2

∑
c21λ

τ+2i
1 ∼ const.λτ1, ρτ ∼ γτ/γ0 ∼ λτ1.
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Thus for a stationary AR(p) model, we expect that the autocorrelation de-
creases geometrically to zero for large lag τ (the decay rate being the char-
acteristic root of largest modulus).
Note. For AR(1), the autocorrelation function is geometrically decreasing:
ρτ = ρτ . This holds exactly, even for small τ . Since the sample autocorrela-
tion (correlogram) rτ approximates the population autocorrelation ρτ = ρτ :
for AR(1),

rτ ∼ ρτ :

the sample ACF is approximately geometrically decreasing (i.e., geometri-
cally decreasing plus sampling error), even for small lags τ . We can look for
this pattern at the beginning of a plot of the ACF, and this is the signature
of an AR(1) process. For AR(p), p > 1, matters are not so simple. The
approximation above only holds for large τ , by which time rτ will be small
(it approximates ρτ , which tends to zero as τ increases), and the pattern
of geometric decrease will tend to be swamped by sampling error. Conse-
quently, it is much harder to interpret the correlogram of an AR(p) for p > 1
than for an AR(1).

By contrast, the moving average – MA(q) – models considered below
have autocorrelations that cut off - they are zero beyond lag q, apart from
sampling error. This is the signature of the ACF of an MA(q), and is easy
to interpret; an AR(1) signature is easy to interpret; that of an AR(p) for
p > 1 is (usually) not.

6. MOVING AVERAGE PROCESSES, MA(q).
Suppose we have a system in which new information arrives at regular

intervals, and new information affects the system’s response for a limited pe-
riod. The new information might be economic, financial etc., and the system
might involve the price of some commodity, for example.

The simplest possible model for the new information process, or inno-
vation process, is white noise, WN(σ2), so we assume this. The simplest
possible model for a response with such a limited time-influence is

Xt = ϵt +
∑q

j=1
θjϵt−j, (ϵt) WN(σ2).

This is called a moving average process or order q, MA(q).
In terms of the lag operator B, ϵt−j = Bjϵt, so if

θ(B) := 1 +
∑q

j=1
θjB

j,

3



we can write
Xt = θ(B)ϵt.

Autocovariance. Since Eϵt = 0, EXt = 0 also. So writing θ0 = 1,

γk = cov(Xt, Xt+k) = E[XtXt+k] = E[
∑q

i=0
θiϵt−i

∑q

j=0
θjϵt−k−j]

=
q∑

i,j=0

θiθjE[ϵt−iϵt−k−j].

Now E[.] = 0 unless i = j + k, when it is σ2. It suffices to take k ≥ 0 (as
γ(−k) = γ(k)). If also k ≤ q, we can take j = i− k, and then the limits on
j are 0 ≤ j ≤ q − k, as 0 ≤ i ≤ q. If however k > q, there are no non-zero
terms as there are no i = k + j with 0 ≤ i, j ≤ q. So

γ(k) =

{
σ2∑q−k

j=0θjθj+k, if k = 0, 1, · · · , q,
0 if k > q,

γ0 = σ2
∑q

j=0
θ2j ,

so the autocorrelation is

ρk =

{∑q−k
i=0 θiθi+k/

∑q
i=0θ

2
i if k = 0, 1, · · · , q,

0 if k > q.

This sudden cut-off of the autocorrelation after lag k = q is the signature of
an MA(q) process.
First-order case: MA(1).

The model equation is

Xt = ϵt + θϵt−1.

By above,

ρ0 = 1, ρ1 = θ/(1 + θ2), ρk = 0 (k ≥ 2).

In terms of the lag (backward shift) operator B:

Xt = (1 + θB)ϵt.

Hence formally

ϵt = (1 + θB)−1Xt =
∑∞

0
(−θ)kBkXt = Xt +

∑∞
1
(−θ)kXt−k :
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Xt = ϵt −
∑∞

1
(−θ)kXt−k.

This is an infinite-order autoregressive representation of (Xt). For (mean-
square) convergence on RHS, as in the AR theory above, we need

|θ| < 1.

The MA(1) model is then said to be invertible: the passage from the MA(1)
representation using (1+ θB) to the AR(∞) representation using (1+ θB)−1

is called inversion.
Note. If we replace θ by 1/θ, ρ1 goes from θ/(1 + θ2) to

(1/θ)/[1 + (1/θ)2] = θ/(1 + θ2)

– the same as before. So for θ ̸= 1, two different MA(1) processes have
the same ACF:we cannot hope to identify the process from the ACF, or its
sample version, the correlogram. However, for |θ| ̸= 1, exactly one of these
processes is invertible. So if we restrict attention to invertible MA processes,
identifiability is restored in general (|θ| ̸= 1), but not in the exceptional case
|θ| = 1, θ ̸= 1.
General case: MA(q). As above,

Xt = ϵt +
∑q

j=1
θjϵt−j = θ(B)ϵt, where θ(λ) = 1 +

∑q

j=1
θjλ

j.

So formally, if we can invert this to obtain

ϵt = θ(B)−1Xt,

and as θ(λ) = 1 + θ1λ+ · · ·, 1/θ(λ) = 1 + c.λ+ · · ·. So

Xt = ϕ1Xt−1 + · · ·+ ϕiXt−i + · · ·+ ϵt,

for some constants ϕi. This expresses the new value Xt at the current time
t as a sum of two components:
(i) an (infinite) linear combination of previous values Xt−i, and
(ii) the new white-noise term ϵt, thought of as the innovation at time t. It is
thus plausible that it should be possible to forecast future values of such a
process given knowledge of its history.

Proceeding as in the proof of the Condition for Stationarity in Section 4,
we find that ϕi is of the form

ϕi =
∑q

k=1
ckλ

i
k,
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where the λk are the roots of the polynomial

λp + θ1λ
p−1 + · · ·+ θp = 0.

For ϕi → 0 as i → ∞ – that is, for the influence of the remote past of the
process to damp out to zero – we need all |λi| < 1. That is, all roots of
the above polynomial (which is θ(1/λ)) should lie inside the unit disc in the
complex λ-plane. Equivalently, all roots of θ(λ) = 0 lie outside the unit disc.
Then as before,

∑
ϕ2
i <∞ and the series

∑
ϕiXt−i converges in mean square.

To summarise, we have:

THEOREM (Condition for Invertibility). For the MA(q) model

Xt = θ(B)ϵt, (ϵt) WN

to be invertible as
ϵt = θ(B)−1Xt,

it is necessary and sufficient that all roots λi of the polynomial equation

λp + θ1λ
p−1 + · · ·+ θp = 0

should lie outside the unit disc. Then

ϵt =
∑∞

1
ϕiXt−i

with
∑
ϕ2
i <∞ and the series convergent in mean square.

Note. 1. The Condition for Stationarity for AR(p) processes and the Con-
dition for Invertibility for MA(q) processes exhibit a duality, in which the
roles of Xt and ϵt are interchanged.
2. We shall confine ourselves in what follows to the invertible case. Then the
parameters θj are uniquely determined by the autocorrelation function ρτ .
3. In the MA(1) case, the above characteristic equation is

λ+ θ1 = 0,

with root λ = −θ1. For invertibility, we need |θ1| < 1, as before. Invertibility
avoids the ambiguity of both θ1 and 1/θ1 giving the same ACF

ρ0 = 1, ρ1 = θ1/(1 + θ21), ρk = 0 (k ≥ 2).
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