smfprob4.tex

SMF PROBLEMS 4. 11.2.2011

Q1 (Product theorem for determinants). Show that $|AB| = |A| \cdot |B|$.

Q2 (*Cramer's Rule*). If Ax = b with A (square and) non-singular, the solution vector x has ith component $x_i = |A_i|/|A|$, where A_i is the matrix obtained from A by replacing its ith column by the RHS b.

Q3 (*Trace Formula*). Show that for x a random vector, with mean Ex and covariance matrix var(x), the mean of the quadratic form $x^T A x$ is

$$E[x^{T}Ax] = trace(A.var(x)) + (Ex)^{T}.A.Ex.$$

Q4. Recall that a matrix A is a projection iff it is idempotent $(A^2 = A)$, and that in regression, the design matrix A is $n \times p$, with $p \ll n$. The projection matrix P (also known as the hat matrix H) is $P := A(A^T A)^{-1}A$.

(i) Show that P, I - P are projections.

(ii) Show that they have traces tr(P) = p, tr(I - P) = n - p.

(iii) Show that for an idempotent matrix, the eigenvalues are 0 or 1, and its trace is its rank.

Q5. If P is a projection of rank r and x_i are independent $N(0, \sigma^2)$, show that the quadratic form $x^T P x$ is σ^2 times a $\chi^2(r)$ -distributed random variable.

NHB