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SMF SOLUTIONS 1. 28.1.2011

Q1. To fit a straight line
y = a+ bx

by least squares through a data set (x1, y1), ..., (xn, yn), we choose a, b so as
to minimise

SS :=
∑n

i=1
e2i =

∑n

i=1
(yi − a− bxi)

2.

Taking ∂SS/∂a = 0 and ∂SS/∂b = 0 gives

∂SS/∂a := −2
∑n

i=1
ei = −2

∑n

i=1
(yi − a− bxi),

∂SS/∂b := −2
∑n

i=1
xiei = −2

∑n

i=1
xi(yi − a− bxi).

To find the minimum, we equate both these to zero:∑n

i=1
(yi − a− bxi) = 0, and

∑n

i=1
xi(yi − a− bxi) = 0.

This gives two simultaneous linear equations in the two unknowns a, b, called
the normal equations. Using the notation

x̄ :=
1

n

∑n

i=1
xi,

dividing both sides by n and rearranging, the normal equations are

a+ bx̄ = ȳ, and ax̄+ bx2 = xy.

Multiply the first by x̄ and subtract from the second:

b = (xy − x̄ȳ)/(x2 − (x̄)2), and then a = ȳ − bx̄.

We will use this bar notation systematically. We call x̄ := 1
n

∑n
i=1xi the sample

mean, or average, of x1, . . . , xn, and similarly for ȳ. In this book (though not
all others!), the sample variance is defined as the average, 1

n

∑n
i=1(xi− x̄)2, of

(xi − x̄)2, written s2x or sxx. Then using linearity of average, or ‘bar’,

s2x = sxx = (x− x̄)2 = x2 − 2x.x̄+ x̄2 = (x2)− 2x̄.x̄+ (x̄)2 = (x2)− (x̄)2.
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Similarly, the sample covariance of x and y is defined as the average of
(x− x̄)(y − ȳ), written sxy. So

sxy = (x− x̄)(y − ȳ) = xy − x.ȳ − x̄.y + x̄.ȳ = (xy)−x̄.ȳ−x̄.ȳ+x̄.ȳ = (xy)−x̄.ȳ.

Thus the slope b is given by b = sxy/sxx, the ratio of the sample covariance
to the sample x-variance.

Q2. With two regressors u and v and response variable y, given a sample
of size n of points (Uu1, v1, y1), . . . , (un, vn, yn) we have to fit a least-squares
plane – that is, choose parameters a, b, c to minimise the sum of squares

SS :=
∑n

i=1
(yi − c− aui − bvi)

2.

Taking ∂SS/∂c = 0 gives∑n

i=1
(yi − c− aui − bvi) = 0 : c = ȳ − aū− bv̄.

We re-write SS as

SS =
∑n

i=1
[(yi − ȳ)− a(ui − ū)− b(vi − v̄)]2.

Then ∂SS/∂a = 0 and ∂SS/∂b = 0 give∑n

i=1
(ui − ū)[(yi − ȳ)− a(ui − ū)− b(vi − v̄)],

∑n

i=1
(vi − v̄)[(yi − ȳ)− a(ui − ū)− b(vi − v̄)].

Multiply out, divide by n to turn the sums into averages, and re-arrange
using our earlier notation: these become

asuu + bsuv = syu,

asuv + bsvv = syv.

These are the normal equations for a and b. The determinant is

suusvv − s2uv = suusvv(1− r2uv)

(as ruv := suv/(su.sv)), ̸= 0 iff ruv ̸= ±1, i.e., iff the (ui, vi) are not collinear,
and this is the condition for the normal equations to have a unique solution.
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Q3. (i) For n = 1, the mean is 1, because a χ2(1) is the square of a standard
normal, and a standard normal has mean 0 and variance 1. The variance is
2, because the fourth moment of a standard normal X is 3, and

var(X2) = E[(X2)2]− [E(X2)]2 = 3− 1 = 2.

For general n, the mean is n because means add, and the variance is 2n
because variances add over independent summands.
(ii) For X standard normal, the MGF of its square X2 is

M(t) :=
∫
etx

2

ϕ(x)dx =
1√
2π

∫ ∞

0
etx

2

.e−
1
2
x2

dx.

We see that the integral converges only for t < 1
2
, when it is 1/

√
(1− 2t):

M(t) = 1/
√
1− 2t (t <

1

2
) for X N(0, 1).

Now when X, Y are independent, the MGF of their sum is the product of
their MGFs. For, etX , etY are independent, and the mean of an independent
product is the product of the means. Combining these, the MGF of a χ2(n)
is given by

M(t) = 1/(1− 2t)
1
2
n (t <

1

2
) for X χ2(n).

(iii) First, f(.) is a density, as it is non-negative, and integrates to 1:∫
f(x)dx =

1

2
1
2
nΓ(1

2
n)

.
∫ ∞

0
etx.x

1
2
n−1 exp(−1

2
x)dx

=
1

Γ(1
2
n)

.
∫ ∞

0
u

1
2
n−1 exp(−u)du (u :=

1

2
x)

= 1,

by definition of the Gamma function. Its MGF is

M(t) =
1

2
1
2
nΓ(1

2
n)

.
∫ ∞

0
etx.x

1
2
n−1 exp(−1

2
x)dx

=
1

2
1
2
nΓ(1

2
n)

.
∫ ∞

0
x

1
2
n−1 exp(−1

2
x(1− 2t))dx.
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Substitute u := x(1− 2t) in the integral. One obtains

M(t) = (1− 2t)−
1
2
n.

1

2
1
2
nΓ(1

2
n)

.
∫ ∞

0
u

1
2
n−1e−udu = (1− 2t)−

1
2
n,

by definition of the Gamma function. //

Q4. (i) ATA is symmetric, so P = A(ATA)−1AT is symmetric. P 2 =
A(ATA)−1ATA(ATA)−1AT = A(ATA)−1AT = P .
(ii) (I−P )2 = I− 2P +P 2 = I− 2P +P = I−P , so I−P is a (symmetric)
projection.
(a) tr(A + B) = tr(A) + tr(B) follows as the trace is additive from its defi-
nition.
tr(AB) =

∑
i(AB)ii =

∑
i

∑
j aijbji, and this is tr(BA) on interchanging the

dummy duffices i and j.
(b) tr(P ) = tr(A(ATA)−1AT ) = tr(ATA(ATA)−1) = tr(Ip) = p, as A is
n× p, so ATA is p× p.
tr(I − P ) = tr(In)− tr(P ) = n− p, as P = A(ATA)−1AT is n× n.

NHB
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