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10. ARCH and GARCH; ECONOMETRICS ([BF, 9.4.1, 220-222)
There are a number of stylised facts in mathematical finance. E.g.:

(i). Financial data show skewness. This is a result of the asymmetry between
profit and loss (large losses are lethal!)
(ii). Financial data have much fatter tails than the normal (Gaussian). We
have discussed this in I.5.
3(iii) Financial data show volatility clustering. This is a result of the economic
and financial environment, which is extremely complex, and which moves
between good times/booms/upswings and bad times/slumps/downswings.
Typically, the market ‘gets stuck’, staying in its current state for longer than
is objectively justified, and then over-correcting. As investors are highly
sensitive to losses (see (i) above), downturns cause widespread nervousness,
which is reflected in higher volatility. The upshot is that good times are
associated with periods of growth but low volatility; downturns spark ex-
tended periods of high volatility (as well as stagnation, or shrinkage, of the
economy).
ARCH and GARCH. We turn to models that can incorporate such features.

The model equations are (with Zt ind. N(0, 1))

Xt = σtZt, σ2
t = α0 +

p∑
1

αiX
2
i−1, (ARCH(p))

while in GARCH(p, q) the σ2
t term becomes

σ2
t = α0 +

p∑
1

αiX
2
i−1 +

q∑
1

βjX
2
t−j. (ARCH(p))

The names stand for (generalised) autoregressive conditionally heteroscedas-
tic (= variable variance). These are widely used in Econometrics, to model
volatility clustering – the common tendency for periods of high volatility, or
variability, to cluster together in time. See e.g. Harvey 8.3, [BF] 9.4, [BFK].

Cointegration and spurious regression.
Integrated processes.

One standard technique used to reduce non-stationary processes to the
stationary case is to difference them repeatedly (one differencing operation
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replaces Xt by Xt −Xt−1). If the series of dth differences in stationary but
that of (d− 1)th differences is not, the original series is said to be integrated
of order d; one writes (Xt) ∼ I(d).
Co-integration.

If (Xt) ∼ I(d), we say that (Xt) is cointegrated with cointegration vector
α if αTXt) is (integrated of) order less than d.

A simple example of cointegration arises in random walks. Suppose
Xn =

∑n
i=1 ξi with ξi iid random variables, and Yn = Xn + ϵn, with the

ϵn iid errors as above, is a noisy observation of Xn. Then the bivariate pro-
cess (X, Y ) = (Xn, Yn) is cointegrated of order 1, with coint. vector (−1, 1)T .

Cointegrated series are series that move together, and commonly occur in
economics. These concepts arose in econometrics, in the work of R. F. EN-
GLE (1942-) and C. W. J. (Sir Clive) GRANGER (1934-2009) in 1987. Engle
and Granger gave (in 1991) an illustrative example – the price of tomatoes
in North Carolina and South Carolina. These states are close enough for a
significant price differential between the two to encourage sellers to transfer
tomatoes to the state with currently higher prices to cash in; this movement
would increase supply there and reduce it in the other state, so supply and
demand would move the prices towards each other.

Engle and Granger received the Nobel Prize in Ecomomics in 2003. The
citation included the following:

”Most macroecomomic time series follow a stochastic trend, so that a tem-
porary disturbance in, say, GDP has a long-lasting effect. These time-series
are called non-stationary; they differ from stationary series which do not grow
over time, but fluctuate around a given value. Clive Granger demonstrated
that the statistical methods used for stationary time series could yield wholly
misleading results when applied to the analysis of nonstationary data. His
significant discovery was that specific combinations of nonstationary time se-
ries may exhibit stationarity, thereby allowing or correct statistical inference.
Granger called this phenomenon cointegration. He developed methods that
have become invaluable in systems where short-run dynamics are affected by
large random disturbances and long-run dynamics are restricted to economic
equilibrium relationships. Examples include the relations between wealth
and consumption, exchange rates and price levels, and short- and long-term
interest rates.”
Spurious regression.

Standard least-squares method work perfectly well if they are applied to
stationary time series. But if they are applied to non-stationary time series,
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they can lead to spurious or nonsensical results. One can give examples of
two time series that clearly have nothing to d with each other, because they
come from quite unrelated contexts, but nevertheless have a high value of
R2. This would normally suggest that a correspondingly high propertion
of the variability in one is accounted for by variability in the other – while
in fact none of the variability is accounted for. This is the phenomenon of
spurious regression, first identified by G. U. YULE (1871-1851) in 1927, and
later studied by Granger and Newbold in 1974. We can largely avoid such
pitfalls by restricting attention to stationary time series, as above.

From Granger’s obituary (The Times, 1.6.2009): ”Following Granger’s
arrival at UCSD in La Jolla, he began the work with his colleague Robert F.
Engle for which he is most famous, and for which they received the Bank of
Sweden Nobel Memorial Prize in Economic Sciences in 2003. They developed
in 1987 the concept of cointegration. Cointegrated series are series that tend
to move together, and commonly occur in economics. Engle and Granger
gave the example of the price of tomatoes in North and South Carolina ....
Cointegration may be used to reduce non-stationary situations to stationary
ones, which are much easier to handle statistically and so to make predictions
for. This is a matter of great economic importance, as most macroeconomic
time series are non-stationary, so temporary disturbances in, say, GDP may
have a long-lasting effect, and so a permanent economic cost. The Engle-
Granger approach helps to separate out short-term effects, which are random
and unpredictable, from long-term effects, which reflect the underlying eco-
nomics. This is invaluable for macroeconomic policy formulation, on matters
such as interest rates, exchange rates, and the relationship between incomes
and consumption.”
Endogenous and exogenous variables. The term ‘endogenous’ means ‘gener-
ated within’. The ARCH and GARCH models above show how variable
variance (or volatility) can arise in such a way. By contrast, ‘exogenous’
means ‘generated outside’. Exogenous variables might be the effect in a
national economy of international factors, or of the national economy on a
specific firm or industrial sector, for example. Often, one has a vector au-
toregressive (VAR) model, where the vector of variables is partitioned into
two components, representing the endogenous and exogenous variables. For
monograph treatments in the econometric setting, see e.g.
C. GOURIÉROUX, ARCHmodels and financial applications, Springer, 1997,
C. GOURÉROUX and A. MONFORT, Time series and dynamic modles,
CUP, 1990.
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VII. MULTIVARIATE ANALYSIS

1. PRELIMINARIES: MATRIX THEORY.
Modern Algebra splits into two main parts: Groups, Rings and Fields on

the one hand, and Linear Algebra on the other. Linear Algebra deals with
linear transformations between vector spaces. We confine attention here to
the finite-dimensional case; the infinite-dimensional case needs Functional
Analysis and is harder. Broadly, Parametric Statistics can be handled in
finitely many dimensions, Non-Parametric Statistics needs infinitely many.

Given a finite-dimensional vector space V , we can always choose a basis
(a maximal set of linearly independent vectors). All such bases contain the
same number of vectors; if this is n, the vector space has dimension n.

Given two finite-dimensional vector spaces and a linear transformation α
between the two, choice of bases (e1, . . . , em) and (f1, . . . , fn) determines a
matrix A = (aij) by

eiα =
n∑

j=1

aijfj (i = 1, . . . ,m).

We write

A =


a11 . . . a1n
...

...
am1 . . . amn

 ,

or A = (aij) more briefly. The aij are called the elements of the matrix; we
write A (m× n) for A (m rows, n columns).

Matrices may be subjected to various operations:
1. Matrix addition. If A = (aij), B = (bij) have the same size, then

A±B := (aij ± bij)

(this represents α± β if α, β are the underlying linear transformations).
2. Scalar multiplication. If A = (aij) and c is a scalar (real, unless we specify
complex), then the matrix

cA := (caij)

represents cα.
3. Matrix multiplication. If A is m× n, B is n× p, then C := AB is n× p,
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where C = (cij) and

cij :=
n∑

k=1

aikbkj

(this represents the product, or composition, αβ or x 7→ xαβ).
Note. Matrix multiplication is non-commutative! – AB ̸= BA in general,
even when both are defined (which can only happen for A, B square of the
same size).
Partitioning.

We may partition a matrix A in various ways. for instance, A as above
partitions as

A =

(
A11 A12

A21 A22

)
,

where A11 is r×s, A12 is r×(n−s), A21 is (m−r)×s, A22 is (m−r)×(n−s),
etc. In the same way, A may be partitioned as
(i) a column of its rows; (ii) a row of its columns.
Rank.

The maximal number of linearly independent rows of A is always the
same as the maximal number of independent columns. This number, r, is
called the rank of A. When r = min(m,n) is as big as it could be, the matrix
A has full rank.
Inverses.

When a square matrix A (n×n) has full rank n, the linear transformation
α : V → V that it represents is invertible, and so has an inverse map α−1 :
V → V such that αα−1 = α−1α = i, the identity map, and α−1 is also a
linear transformation. The matrix representing α−1 is called A−1, the inverse
matrix of A:

AA−1 = A−1A = I,

the identity matrix of size n: I = (δij) (δij = 1 if i = j, 0 otherwise – the
Kronecker delta).
Transpose.

If A = (aij), the transpose is A′, or AT := (aji).
Note that, when all the matrices are defined,

(AB)−1 = B−1A−1

(as this gives (AB)(AB)−1 = ABB−1A−1 = AA−1 = I, and similarly
(AB)−1(AB) = I, as required), and

(AB)T = BTAT
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(as this has (i, j) element
∑

k(B
T )ik(A

T )kj =
∑

k bkiajk =
∑

k ajkbki = (AB)ji,
as required).
Determinants.

There are n! permutations σ of the set

Nn := {1, 2, . . . , n}

– bijections σ : Nn → Nn. Each permutation may be decomposed into a
product of transpositions (interchanges of two elements), and the parity of
the number of transpositions in any such decomposition is always the same.
Call σ odd or even according as this number is odd or even. Write

sgn σ := 1 if σ is even, −1 if σ is odd

for the sign or signum of σ. For A a square matrix of size n, the function

det A, or |A|, :=
∑
σ

(−1) sgn σa1,σ(1)a2,σ(2) . . . an,σ(n),

where the summation extends over all n! permutations, is called the deter-
minant of A, det A or |A|.
Properties.
1. |AT | = |A|.
Proof. If σ−1 is the inverse permutation to σ, σ and σ−1 have the same parity,
so the sums for their determinants have the same terms, but in a different
order.
2. If two rows (or columns) of A coincide, |A| = 0.
Proof. Interchanging two rows changes the sign of |A| (extra transposition,
which changes the parity), but leaves A and so |A| unaltered (as the two
rows coincide). So |A| = −|A|, giving |A| = 0.
3. |A| depends linearly on each row (or column) (det is a multilinear func-
tion, and this area is called Multilinear Algebra).
4. If A is n× n, |A| = 0 iff A has rank r < n.
5. Multiplication Theorem for Determinants. If A, B are n× n (so AB, and
BA, are defined),

|AB| = |A|.|B|.
Proof. We can display a matrix A as a row of its columns, A = [a1, . . . , an]
(or as a column of its rows). The kth column of the matrix product C = AB
is then

ck = b1ka1 + . . .+ bnkan.
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For, the ith element of the kth column of C is

cik =
∑
j

aijbjk =
∑
j

bjk[aj]i = [
∑
j

bjkaj]i.

This is the ith element of the above vector equation, on both sides. Then

detC = detAB = det[b11a1 + . . .+ bn1an, . . . , b1na1 + . . .+ bnnan].

Expand the RHS by the first column. We get a sum of the form∑
j1

bj1,1det[. . .].

Expand each det here by the second column. We get a double sum, of the
form ∑

j1,j2

bj1,1bj2,1det[. . .],

and so on, finally getting ∑
j1,...,jn

bj1,1 . . . bjn,1det[. . .].

Each matrix whose det we are taking here is a row of columns of A. Each
such det with two columns the same vanishes. So we can reduce the ‘big’
sum (nn terms) to a smaller sum with all columns different (n! terms). Then
we have a permutation of the columns, σ say, giving

detC =
∑
σ

bσ(1),1 . . . bσ(n),ndet[aσ(1), . . . , aσ(n)].

Putting the columns here in their natural order,

detC =
∑
σ

bσ(1),1 . . . bσ(n),n.(−1)sgn(σ)det[a1, . . . , an].

The determinant here is detA, so we can take it out. This leaves detB, so

detC = det(AB) = detA.detB. //

6. Inverses again.
If A is n × n, the (i, j) minor is the determinant of the (n − 1) × (n −

1) submatrix obtained by deleting the ith row and jth column. The (i, j)
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cofactor, or signed minor Aij, is the (i, j) minor times (−)i+j (the signs follow
a chessboard or chequerboard pattern, with + in the top left-hand corner),

The matrix B = (bij), where

bij := Aji/|A|,

ia the inverse matrix A−1 of A, defined iff |A| ≠ 0 (A is called singular if
|A| = 0, non-singular otherwise (thus a square matrix has a determinant iff
it is non-singular), and

AA−1 = A−1A = I

as before:

inverse = transposed matrix of cofactors over determinant.

Proof. With B as above, C := AB = (cij),

cij =
∑
k

aikbkj =
∑
k

aik.Ajk/|A|.

If i = j, the RHS is 1 (expansion of |A| by its ith row). If not, the RHS
is 0 (expansion of the determinant of a matrix with two identical rows). So
cij = δij, so C = AB = I. Similarly, BA = I.
Solution of linear equations.

If A is n× n, the linear equations

Ax = b

possess a unique solution x iff A is non-singular (A−1 exists), and then

x = A−1b.

If A is singular (A has rank r < n), then either there is no solution (the equa-
tions are inconsistent), or there are infinitely many solutions (some equations
are redundant, and one can give some of the elements xi arbitrary values and
solve for the rest). What decides between these two cases is the rank of the
augmented matrix (A, b) obtained by adjoining the vector b as a final column.
Orthogonal Matrices.

A square matrix A is orthogonal if

AT = A−1,
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or equivalently, if
ATA = AAT = I.

Then |ATA| = |AT ||A| = |A|.|A| = |I| = 1, |A|2 = 1, |A| = ±1 (we take the
+ sign).

If A = (a1, . . . , an) (row of column vectors, so AT is the column of row-
vectors aTi ) is orthogonal, A

TA = I, i.e.
aT1
...
aTn

 (a1, . . . , an) = I,

aTi aj = δij: the columns of A are orthogonal to each other, and similarly the
rows are orthogonal to each other.
Note. If A, B are orthogonal, so is AB, since (AB)TAB = BTATAB =
BTB = I.
Generalised inverses.

The theory above partially extends to non-square matrices, and matrices
not of full rank. For A m× n, call A− a generalised inverse if

AA−A = A.

We quote:
1. Generalised inverses always exist (but need not be unique),
2. If the linear equation

Ax = b

is consistent (has at least one solution), then a particular solution is given
by

x = A−b.

Eigenvalues and eigenvectors.
If A is square, and

Ax = λx (x ̸= 0),

λ is called an eigenvalue (latent value, characteristic value, e-value) of A,
x an eigenvector (latent vector, characteristic vector, e-vector) (determined
only to within a non-zero scalar factor c, as A(cx) = λ(cx)). Then

(A− λI)x = 0
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has non-zero solutions x, so infinitely many solutions cx, so A−λI is singular:

|A− λI| = 0.

If A is n × n, this is a polynomial equation of degree n in λ. By the Fun-
damental Theorem of Algebra (see e.g. M2PM3 L19-L20), there are n roots
λ1, . . . , λn (possibly complex, counted according to multiplicity).

A matrix A is singular iff the linear equation Ax = 0 has some non-zero
solution x. This is the condition for 0 to be an eigenvalue:

a matrix is singular iff 0 is an eigenvalue.

Since the coefficient of λn in the polynomial p(λ) := |A − λI| is (−)n, p(λ)
factorises as

p(λ) := |A− λI| =
n∏
1

(λ− λi).

Put λ = 0:

|A| =
n∏
1

λi :

the determinant is the product of the eigenvalues.

Match the coefficients of (−λ)n−1: in the RHS, we get a λi term for each i, so
the coefficient is

∑
i λi, the sum of the eigenvalues. In the LHS, we get an aii

term for each i, so the coefficient is
∑

aii, the sum of the diagonal elements
of A, which is called the trace of A. Comparing:

tr A =
∑
i

λi :

the trace is the sum of the eigenvalues.

Properties.
1. If A is symmetric, eigenvectors xi, xj corresponding to distinct eigenvalues
λi, λj are orthogonal.
Proof. Axi = λixi, so xT

i A
T = λix

T
i , or xT

i A = λix
T
i as A is symmetric.

So xT
i Axj = λix

T
i xj. Interchanging i and j and transposing (or arguing as

above), xT
i Axj = λjx

T
i xj. Subtract: (λi − λj)x

T
i xj = 0, giving xT

i xj = 0 as
λi ̸= λj. //
2. If A is real and symmetric, its eigenvalues are real. For Ax = λx; tak-
ing complex conjugates gives Ax = λx as A is real. Transposing, as A is
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symmetric, this gives xTA = λxT . So xTAx = λxTx. Also Ax = λx, so
xTAx = λxTx. Subtract: 0 = (λ− λ)xTx. But if x has jth element xj + iyj,

xTx =
∑

j(x
2
j + y2j ), which is non-zero as x is non-zero. So λ

T
= λ, and λ is

real. //
Note. The same proof shows that if A is anti-symmetric – AT = −A – the
eigenvalues are purely imaginary.
3. If A is real and orthogonal, its eigenvalues are of unit modulus: |λ| = 1.
Proof. If Ax = λx, Ax = λx as A is real, so xTAT = xTλ. So xTATAx =
xTλ.λx, which as A is orthogonal is xTx = λλ.xTx. Divide by xTx =

∑
i x

2
i >

0 (as x ̸= 0): λ.λ = |λ|2 = 1. //
4. If C, A are similar (C = B−1AB), A has eigenvalues λ and eigenvectors
x – then C has eigenvalues λ and eigenvectors B−1x .
Proof. |A−λI| = 0, so |C−λI| = |B−1AB−λB−1IB| = |B−1||A−λI||B| = 0.
So C has eigenvalues λ. C(B−1x) = (B−1AB)(B−1x) = B−1Ax = B−1λx =
λ(B−1x), so C has eigenvectors B−1x. //
Corollary. Similar matrices have the same determinant and trace.
Proof. These are the product and sum of the eigenvalues. //
5. If A is non-singular, the eigenvalues of A−1 are the reciprocals λ−1 of the
eigenvalues λ of A, and the eigenvectors are the same.
Proof. Ax = λx, so x = A−1λx, so A−1x = λ−1x. //

Theorem (Spectral Decomposition, or Jordan Decomposition). A
symmetric matrix A can be decomposed as

A = ΓΛΓT =
∑

λiγiγ
T
i ,

where Λ = diag(λi) is the diagonal matrix of eigenvalues λi and Γ = (γ1, . . . , γn)
is an orthogonal matrix whose columns γi are standardised eigenvectors
(γT

i γi = 1).

We shall prove a more general result (SVD) in Day 12. As a corollary,
one can show that for A symmetric, its rank r(A) is the number of non-zero
eigenvalues.
Square root of a matrix.

If A is symmetric, with decomposition as above, and we define Λ1/2 :=
diag(λ

1/2
i ), then putting

A1/2 := ΓΛ1/2ΓT ,

A1/2A1/2 = ΓΛ1/2ΓTΓΛ1/2ΓT
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= ΓΛ1/2Λ1/2ΓT (Λ is orthogonal)

= ΓΛΓT (Λ = diag(λi))

= A.

We call A1/2 the square root of A. If also A is non-singular (so no eigenvalue
is 0, so each λ−1

i is defined), write

A−1/2 := ΓΛ−1/2ΓT .

A similar argument shows that

A−1/2A−1/2 = A−1,

so we call A−1/2 the square root of A−1, and the inverse square root of A.
Positive definite matrices.

If A (n × n) is real and symmetric, A is positive definite (respectively
non-negative definite) if

xTAx > 0 (respectively ≥ 0) for all non-zero x.

Here xTAx =
∑n

i,j=1 xiaijxj =
∑n

i=1 aiix
2
i +

∑
i ̸=j aijxixj is a quadratic form

in the n variables x1, . . . , xn (one can replace
∑

i ̸=j by 2
∑

i<j).
By the Spectral Decomposition Theorem,

xTAx = xTΓΛΓTx = yTΛy (y := ΓTx)

=
∑

λiy
2
i .

So A is non-negative definite (positive definite) iff
∑

i λiy
2
i ≥ 0 for all y (> 0

for all non-zero y) iff all λi ≥ 0 (> 0):
Proposition. A real symmetric matrix A is non-negative definite (positive
definite) iff all its eigenvalues are non-negative (positive).

Matrices of the form ATA are common in Statistics (e.g., in Regression).
1. ATA is always non-negative definite, since xTATAx = (Ax)T (Ax) =
yTy =

∑
y2i ≥ 0, with y := Ax. So all eigenvalues of ATA are non-negative.

2. ATA is positive definite iff all eigenvalues are positive iff ATA is non-
singular, and one can show this happens iff A has full rank.
3. If N(A) is the null space of A (the vector space of all x with Ax = 0),
N(A) = N(ATA).
4. ATA and A have the same rank.
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