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4. SUFFICIENCY AND MINIMAL SUFFICIENCY

Recall (IS II) the idea of sufficiency as data reduction, and minimal suffi-
ciency as data reduction carried as far as possible without loss of information.
We now formalise this.

Definition (Fisher, 1922). To estimate a parameter θ from data x, a statistic
T = T (x) is sufficient for θ if the conditional distribution of x given T = T (x)
does not depend on θ.

Interpretation. Always use what you know. We know T : is this enough? The
conditional distribution of x given T represents the information remaining in
the data x over and above what is in the statistic T . If this does not involve
θ, the data cannot have anything left in it to tell us about θ beyond what is
already in T .

The usual – because the easiest – way to tell when one has a sufficient
statistics is the result below. The sufficiency part is due to Fisher in 1922,
the necessity part to J. NEYMAN (1894-1981) in 1925.

Theorem (Factorisation Criterion; Fisher-Neyman Theorem. T is
sufficient for θ if the likelihood factorises:

f(x; θ) = g(T (x); θ)h(x),

where g involves the data only through T and h does not involve the param-
eter θ.

Proof. We give the discrete case; the density case is similar.
Necessity. If such a factorisation exists,

Pθ(X = x) = g(T (x), θ)h(x),

then given t0,

P (T = t0) =
∑

x:T (x)=t0

Pθ(X = x) =
∑

x:T (x)=t0

g(T (x), θ)h(x) = g(t0, θ)
∑

x:T (x)=t0

h(x).
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So Pθ(X = x|T = t0) = Pθ(X = x & T = T (X) = t0)/Pθ(T = t0) is 0 unless
T (x) = t0, in which case it is

Pθ(X = x)/Pθ(T = t0) =
g(t0; θ)h(x)

g(t0; θ)
∑

T (x)=t0 h(x)
=

h(x)∑
T (x)=t0 h(x)

.

This is independent of θ, so T is sufficient.
Sufficiency. If T is sufficient, the conditional distribution of X given T is
independent of θ:

Pθ(X = x|T = t0) = c(x, t0), say. (i)

The LHS is P (X = x & T (X) = t0)/P (T = t0). Now the denominator is 0
unless t0 = T (X). Defining c(x, t0) to be 0 unless t0 = T (x), we have (i) in
all cases, and now

c(x, t0) = Pθ(X = x)/P (T (X) = t0),

as ”& T (X) = t0 = T (x)” is redundant. So now

Pθ(X = x) = Pθ(T (X) = t0)c(x, t0),

a factorisation of the required type. //

Cor. If U = a(T ) with a injective (one-to-one), T sufficient implies U suffi-
cient.

Proof. T = a−1(U) as a is one-to-one, so

f(x; θ) = g(a−1(U); θ)h(x) = G(U(x); θ)h(x),

say, a factorisation of Fisher-Neyman type, so U is sufficient. //

So if, e.g. T is sufficient for the population variance σ2,
√
T is sufficient

for the standard deviation σ, etc.

Example: Normal families N(µ, σ2).
(i) The joint likelihood factorises into the product of the marginal likelihoods,
so

f(x;µ, σ2) =
1

(2π)
1
2
nσn

. exp{−1

2

n∑
1

(xi − µ)2/σ2}. (1)
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Since x̄ := 1
n

∑n
1 xi,

∑
(xi − x̄) = 0, so∑

(xi−µ)2 =
∑

[(xi−x̄)+(x̄−µ)]2 =
∑

(xi−x̄)2+n(x̄−µ)2 = n(S2+(x̄−µ)2) :

the likelihood is

L = f(x;µ, σ2) =
1

(2π)
1
2
nσn

. exp{−1

2
n(S2 + (x̄− µ)2)/σ2}. (2)

By the Factorisation Criterion, (x̄, S2) is (jointly) sufficient for (µ, σ2). So
for a normal family: only two numbers are needed for the two parameters
µ, σ2, namely x̄, S2 (equivalently,

∑
X,

∑
X2 – note that good programmable

pocket calculators have keys for
∑

X,
∑

X2 for this purpose!)
(ii) Now suppose σ is known (so counts as a constant, not a parameter).
Then (2) says that x̄ is now sufficient for µ.
(iii) Now suppose µ is known. Then (1) says that now

∑
(xi−µ)2 is sufficient

for σ2.

Minimal Sufficiency. Sufficiency enables data reduction – reducing from n
numbers (n is the sample size – the bigger the better) to a much smaller
number (as above). Ideally, we would like to reduce as much as possible,
without loss of information. How do we know when we have done this?

Recall that when applying a function, we lose information in general (we
do not lose information only when the function is injective – one-to-one, when
we can go back by applying the inverse function). This leads to the following

Definition. A sufficient statistic T is minimal (sufficient) for θ if T is a
function of any other sufficient statistic T ′.

Minimal sufficient statistics are clearly desirable (‘all the information with
no redundancy’). The following result gives a way of constructing them.

Theorem (LEHMANN & SCHEFFÉ, 1950). If T is such that the like-
lihood ratio f(x; θ)/f(y; θ) is independent of θ iff T (x) = T (y), then T is a
minimal sufficient statistic for θ.

We quote this. To find minimal sufficient statistics, we form the likeli-
hood ratio, and seek to eliminate the parameters. This works very well in
practice, as examples show (see Problems 2).
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5. LOCATION AND SCALE; TAILS

In one dimension, the mean µ gives us a natural measure of location for
a distribution. The variance σ2, or standard deviation (SD) σ, give us a
natural measure of scale.
Note. The variance has much better mathematical properties (e.g., it adds
over independent, or even uncorrelated, summands). But the SD has the
dimensions of the random variable, which is better from a physical point of
view. As moving between them is mathematically trivial, we do so at will,
without further comment.
Example: Temperature. In the UK, before entry to the EU (or Common
Market as it was then), temperature was measured in degrees Fahrenheit, F
(freezing point of water 32oF , boiling point 212oF (these odd choices are only
of historical interest – but dividing the freezing-boiling range into 180 parts
rather than 100 is better attuned to homo sapiens being warm-blooded, and
most of us having trouble with decimals and fractions!) The natural choice
for freezing is 0; 100 parts for the freezing-boiling range is also natural when
using the metric system – whence the Centigrade (= Celsius) scale. Back
then, one used F for ordinary life, C for science, and the conversion rules

C =
5

9
(F − 32), F =

9

5
C + 32

were part of the lives of all schoolchildren (and the mechanism by which
many of them grasped the four operations of arithmetic!)
Pivotal quantities.

A pivotal quantity, or pivot, is one whose distribution is independent of
parameters. Pivots are very useful in forming confidence intervals.

Defn. A location family is one where, for some reference density f , the
density has the form

f(x− µ);

here µ is a location parameter. A scale family (usually for x ≥ 0) is of the
form

f(x/σ);

here σ is a scale parameter. A location-scale family is of the form

f(
x− µ)

σ
).
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Pivots here are

X̄ − µ (location); X̄/σ (scale);
X̄ − µ

σ
(location-scale).

Examples. The normal family N(µ, σ2) is a location-scale family.
The Cauchy location family is

f(x− µ) =
1

π[1 + (x− µ)2]
.

In higher dimensions, the location parameter is the mean µ (now a vector);
the scale parameter is now the covariance matrix

Σ = (σij), σij := cov(Xi, Xj) = E[(Xi − EXi)(Xj − EXj)].

CAPM.
All of this is highly relevant to Mathematical Finance. Finance was an

art rather than a science before the 1952 PhD thesis of Harry MARKOWITZ
(1927-; Nobel Prize 1990). Markowitz gave us two insights that have become
so much part of the ambient culture that it is difficult to realise that they
have not always been there. These are:
1. Think of risk and return together, not separately. Now return corresponds
to mean (= mean rate of return), risk corresponds to variance – hence mean-
variance analysis (hence also the efficient frontier, etc. – one seeks to max-
imise return for a given level of risk, or minimise risk for a given return rate).
2. Diversify (don’t ‘put all your eggs in one basket’). Hold a balanced portfo-
lio – a range of risky assets, with lots of negative correlation – so that when
things change, one’s losses on some assets will tend to be offset by gains on
others.
Markowitz’s work led on to the Capital Asset Pricing Model (CAPM – ”cap-
emm”) of the 1960s (Jack TREYNOR in 1961/62, William SHARPE (1934-;
Nobel Prize 1990), John LINTNER (1965), Jan MOSSIN (1966)), the first
phase of the development of Mathematical Finance. The second phase was
triggered by the Black-Scholes formula of 1973 and its follow-up by Merton
(Fischer BLACK (1938-95); Myron SCHOLES (1941-; Nobel Prize 1997);
Robert C. MERTON (1944-; Nobel Prize 1997)).

As a result of Markowitz’s work, the vector-matrix parameter (µ,Σ) is
accepted as an essential part of any model in mathematical finance. As a
result of CAPM, regression methods (Ch. V) are an essential part of any
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portfolio management programme. The x-axis is used to represent the re-
turn for the market (or a portfolio) as a whole, the y-axis for the return for
a particular asset – whence phrases such as ‘the quest for high beta’.

Elliptical distributions.
The normal density is a multiple of exp{−1

2
(x−µ)2/σ2}. In higher dimen-

sions, we shall see (Ch. V) that this is replaced by exp{−1
2
(x− µ)TΣ−1(x−

µ)}. Now the matrices Σ, Σ−1 are positive definite (PD) (Ch. VII), so the
contours

(x− µ)TΣ−1(x− µ) = const.

are ellipsoids. So the normal distribution is called elliptical (or elliptically
contoured). It is extremely useful, but suffers from various deficiencies in
practice, e.g.:
(i) It is symmetric. Many financial data sets show asymmetry, or skew. This
is partly (or even largely) a reflection of the asymmetry between profit and
loss. Windfall profits are pleasant; ‘windfall losses’ are dangerous, indeed
potentially fatal (to the firm – they can lead to bankruptcy). On an indi-
vidual, or psychological, level: most people get more pain from a given loss
than they get pleasure from the same amount of profit. One can actually see
skew present, in such things as the ‘volatility smirk’.
2. It has extremely thin tails. Most financial data sets have tails that are
much fatter than the ultra-thin normal tails. Take, for example, asset returns
(= profit or loss, scaled by the initial asset price) over a period, the return
period. Their statistical properties vary dramatically with the return period.
Bear in mind that the net profit/loss over a period is the sum of those over
shorter periods.
(i) for long return periods (monthly, say – the Rule of Thumb is that 16
trading days suffice), the CLT applies, and asset returns are approximately
normal (‘aggregational Gaussianity) – log-density a parabola (so density de-
cays like the exponential of a square);
(ii) for intermediate return periods (daily, say), a commonly used model is
the generalised hyperbolic (GH) – log-density a hyperbola, with linear asymp-
totes, so density decays like the exponential of a linear function);
(iii) for high-frequency returns (‘tick data’, say – every few seconds), for rea-
sons related to universality in Physics, the density typically decays like a
power (as with the Student t distribution – recall that t(n), the Student-t
with n degrees of freedom (df), has t(n) → Φ = N(0, 1) as n → ∞ (Problems
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1 Q4).
One can handle these cases together by using a semi-parametric model.

The parametric part is (µ,Σ); the non-parametric part is a function – the
density generator – g(.) governing the shape of the density, in particular its
tail behaviour (in the normal case g(.) = c. exp{−1

2
.}). This combination

gives a semi-parametric model. It has the pleasant (and unusual) feature
that ignorance of one part of the model imposes no penalty on the efficiency
with which one can estimate the other part. For background and details, see
e.g. [BFK].

Groups and invariance.
In many statistical problems, we have the action of some group natu-

rally occurring as part of the setting of the problem. For instance, in any
statistical study of global warming, our data will consists of measurements
of temperature – but, temperature lacks a natural measure of location or
of scale. Accordingly, our methods should accommodate this by behaving
sensibly under change of location and scale. On the line, change of location
and scale is effected by a non-singular linear transformation x 7→ ax + b,
a ̸= 0. In higher dimensions, this leads to the affine group, of non-singular
linear transformations x 7→ Ax + b (A an invertible matrix, b a vector). In
financial applications, (A, b) will typically be (Σ, µ), where Σ is the covari-
ance matrix and µ is the mean return vector of our portfolio of risky assets.
Other relevant groups include the Euclidean motion group, the set of all lin-
ear transformations x 7→ Ox + b, where O is an orthogonal matrix. The
Euclidean motion group corresponds to the freedom to change from one set
of axes to another in Euclidean space when representing rigid bodies; the
affine group captures the sense in which an ellipsoid (say) in one coordinate
system will be an ellipsoid in any (and similarly for hyperboloids, parabolae
etc.)

A location estimator should not depend on our choice of origin – should
be invariant under changes of location; similarly for scale estimator under
changes of scale. In the context of CAPM, where we carry (µ,Σ) as a pa-
rameter, our estimators should transform appropriately under the action of
the affine group. For the relevant theory here, see e.g.
Morris L. EATON, Group invariance: Appliations in statistics, Institute of
Math. Statistics, 1989.
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II. HYPOTHESIS TESTING

1. FORMULATION
The essence of the scientific method is to formulate theories, and test

them experimentally. Thus a typical scientific experiment will test some the-
oretical prediction, or hypothesis.

We can never prove that a scientific theory, or hypothesis, is true. To
take an extreme case, look at Newton’s Laws of Motion (Sir Isaac NEW-
TON (1642-1727); Principia, 1687). This was the mathematics that made
possible the Scientific Revolution, and Newton’s Laws were regarded as un-
challengeable for more than two centuries. But in the 20th century, Quantum
Mechanics showed that Newton’s Laws are approximate only – useful in the
macroscopic case, but inadequate at the atomic or subatomic level.

With this in mind, we should treat established theory with respect, and
not replace it lightly (or textbooks would become too ephemeral!). It is cus-
tomary, and convenient, to represent the existing theory by a null hypothesis,
H0, and to test it against a candidate new theory, an alternative hypothesis,
H1.

A hypothesis is simple if it completely specifies the parameter(s); e.g.,

H0 : θ = θ0,

composite otherwise, e.g.
H0 : θ > θ0.

As above, there is an asymmetry between H0 and H1: H0 is the ‘default
option’. We will discard H0 in favour of H1 only if the data gives us convinc-
ing evidence to do so.
Legal analogy.

Hypothesis test ↔ Criminal trial

Null hypothesis H0 ↔ accused

H0 accepted till shown untenable ↔ accused innocent until proved guilty

Accept (= do not reject) H0 ↔ not guilty verdict

Reject H0 (for H1) ↔ guilty verdict
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Data ↔ evidence

Statistician ↔ jury

Significance level α ↔ probability of convicting an innocent person.

Significance level.
The above introduces this important term. Statistical data (like legal

evidence) is random (if we re-sampled, we would get different data!) So we
can never conclude with certainty anything from data – including that H0

is false. But we cannot go from this to saying that we can never reject H0

– or scientific progress would halt, being frozen at the current level. We
strike a sensible balance by choosing some small probability, α, of rejecting
a valid null hypothesis, and working with that. We call α the significance
level. Common choices are α = 0.05, or 5%, for ordinary work, and α = 0.01,
or 1%, for accurate work. But note that the choice of α is down to you,
the statistician, so is subjective. We like to think of Science as an objective
activity! So the whole framework of Hypothesis Testing is open to question
– indeed, it is explicitly rejected by Bayesian statistician (see Ch. III below).
(But then, the concept of a criminal trial is explicitly rejected in some forms
of political thinking, such as Anarchism.)

There are two types of error in Hypothesis Testing, called Type I error
– false rejection (rejecting H0 wrongly, probability α – cf. convicting an
innocent person), and Type II error – false acceptance (accepting H0 when
it is false, probability β, say – cf. acquitting a guilty person). The usual
procedure is to fix α, and then try to minimise β for this α.

Usually, we decide on a suitable test statistic, T = T (X), and reject H0

if the data X falls in the critical region (or rejection region), R say, where T
falls in some set S. Then abbreviating Pθi to Pi:

α = P0(X ∈ R), β = P1(X /∈ R).

We often look at
1− β = P1(X ∈ R),

the probability that the test correctly picks up that H0 is false. We can think
of this as the sensitivity of the test; the technical term used is the power of
the test. This depends on θ (grossly wrong hypotheses are easier to reject
than marginally wrong ones!);

θ 7→ 1− β(θ)
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is called the power function of the test.
Usually, we fix the significance level α and the sample size n, and then

seek to choose the rejection region R so as to maximise the power 1 − β
[minimise the prob. β of Type II error, false acceptance].

The Likelihood Principle (LP) says that all that matters is the likelihood
L, which is

L0 := L(X; θ0) if H0 is true;
L1 := L(X; θ1) if H1 is true.

The idea of maximum likelihood estimation is that the data supports θ if
L(X; θ) is large. This suggests that a good test statistic for H0 v.H1 would
be the likelihood ratio (LR)

λ := L0/L1 = L(X; θ0)/L(X; θ1),

rejecting H0 for H1 if λ is too small – that is, using the critical region

R := {X : λ(X) ≤ c},

where c is chosen so that
α = P0(X ∈ R).

In the density case, such a region does exist. In the discrete case, it may
not: the probability may ‘jump over’ the level α if one more point is in-
cluded. One can allow for this by randomisation (including the ‘extra point’
with some probability so as to get α right) but we ignore this, and deal with
the density case – the important case in practice.

2. THE NEYMAN-PEARSON LEMMA
The simple suggestion above is in fact best possible. This is due to J.

NEYMAN (1894-1981) and E. S. PEARSON (1895-1980) in 1933.

Theorem (Neyman-Pearson Lemma). To test a simple null hypothe-
sis H0 : θ = θ0 against a simple alternative hypothesis H1 : θ = θ1 at
significance level α, a critical region of the form

R := {X : λ ≤ c} = {X : L(X; θ0)/L(X; θ1) ≤ c}, α = P0(λ ≤ c)

is best possible (most powerful): the β = β(R) for this R is as small as
possible for given α and n.
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Proof. If S is any other critical region with the same significance level (or
‘size’) α, we need to show β(S) ≥ β(R), i.e.∫

Sc
f(x; θ1)dx ≥

∫
Rc

f(x; θ1)dx :
∫
Sc
f(θ1) ≥

∫
Rc

f(θ1),

or as densities integrate to 1,∫
S
f(θ1) ≤

∫
R
f(θ1). (∗)

But∫
R
f(θ1)−

∫
S
f(θ1) =

∫
R∩S

f(θ1) +
∫
R\S

f(θ1)−
∫
R∩S

f(θ1)−
∫
S\R

f(θ1)

=
∫
R\S

f(θ1)−
∫
S\R

f(θ1).

Now
λ = L0/L1 ≤ c (X ∈ R), > c (X /∈ R),

or reverting from ”L” to ”f” notation,

f(θ1) ≥ c−1f(θ0) in R, < c−1f(θ0) in Rc.

As R \ S ⊂ R, this gives∫
R\S

f(θ1) ≥ c−1
∫
R\S

f(θ0).

Similarly,∫
S\R

f(θ1) ≤ c−1
∫
S\R

f(θ0), −
∫
S\R

f(θ1) ≥ −c−1
∫
S\R

f(θ0.

Add:∫
R
f(θ1)−

∫
S
f(θ1) =

∫
R\S

f(θ1)−
∫
S\R

f(θ1) ≥ c−1
[∫

R\S
f(θ0)−

∫
S\R

f(θ0)
]
.

(a)
But both R and S have size (θ0-probability) α:

α =
∫
R
f(θ0) =

∫
R∩S

f(θ0) +
∫
R\S

f(θ0),

11



α =
∫
S
f(θ0) =

∫
R∩S

f(θ0) +
∫
S\R

f(θ0).

Subtract: ∫
R\S

f(θ0) =
∫
S\R

f(θ0).

This says that the RHS of (a) is 0. Now (a) gives (∗). //

Note. The Neyman-Pearson Lemma (NP) is fine as far as it goes – simple v.
simple. But most realistic hypothesis testing situations are more complicated.
Fortunately, NP extends to some important cases of simple v. composite; see
below. We turn to composite v. composite later, using likelihood ratio tests
(LR).
Sufficiency. If T is sufficient for θ,

L(X; θ) = g(T (X; θ)h(X),

by Fisher-Neyman. Dividing,

λ := L(θ0)/L(θ1) = g(T (X; θ0)/g(T (X; θ1)

is a function of T only. So if we have a sufficient statistic T , we lose nothing
by restricting to test statistics which are functions of T .

Example.
1. Normal means, N(µ, σ2), σ known.

To test H0 : µ = µ0 v. H1 : µ = µ1, where µ1 < µ0. It turns out
that the NP critical region is of the form ‘reject if X̄ is too small’. (This is
intuitive, as µ1 < µ0.) How small is too small? Because the significance level
σ involves probabilities under H0, the critical region is the same for all µ1,
provided only that µ1 < µ0 (if instead µ1 > µ0, the critical region is ‘reject if
X̄ is too big’). That is, the NP test is most powerful, uniformly in µ1 for all
µ1 < µ0. We call the critical region uniformly most powerful (UMP) for the
simple null hypothesis H0: µ = µ0 v. the composite alternative hypothesis
H1 : µ < µ0. Similarly for H1 : µ > µ0.
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