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3. LIKELIHOOD RATIO TESTS
We turn now to the general case: composite H0 v. composite H1. We may

not be able to find UMP (best) tests. Instead, we seek a general procedure
for finding good tests.

Let θ be a parameter, H0 be a null hypothesis – a set of parameter values
Θ0, such that H0 is true iff θ ∈ Θ0, and similarly for H1, Θ1. It is technically
more convenient to take H1 more general than H0, and we can do this by
replacing H1 by ”H1 or H0”. Then Θ0 ⊂ Θ1.

With L the likelihood, we write

L0 := sup
θ∈Θ0

L(θ), L1 := sup
θ∈Θ1

L(θ).

As with MLE: the size of L1 is a measure of how well the data supports H1.
So to test H0 v. H1, we use test statistic the likelihood ratio (LR) statistic,

λ := L0/L1,

and critical region: reject H0 if λ is too small.
Since Θ0 ⊂ Θ1, L0 ≤ L1, so

0 ≤ λ ≤ 1.

In standard examples, we may be able to find the distribution of λ. But
in general this is hard to find, and we have to rely instead on large-sample
asymptotics.

Theorem (S. S. WILKS, 1938). If θ is a one-dimensional parameter,
and λ is the likelihood-ratio statistic for testing H0 : θ = θ0 v. H1 : θ
unrestricted, then under the usual regularity conditions for MLEs (I.3),

−2 log λ → χ2(1) (n → ∞).

Proof. λ = L0/L1, where L0 = L(X; θ0), L1 = L(X; θ̂), with θ̂ the MLE
(I.1). So

log λ = ℓ(θ0)− ℓ(θ̂) = ℓ0 − ℓ1,
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say. But

ℓ(θ0) = ℓ(θ̂) + (θ0 − θ̂)ℓ′(θ̂) +
1

2
(θ0 − θ̂)ℓ′′(θ∗),

with θ∗ between θ0 and θ̂, by Taylor’s Theorem. As θ̂ is the MLE, ℓ′(θ̂) = 0.
So

log λ = ℓ0 − ℓ1 =
1

2
(θ0 − θ̂)2ℓ′′(θ∗), −2 log λ = (θ0 − θ̂)2[−ℓ′′(θ∗)].

By consistency of the MLE (I.3), θ̂ → θ0 a.s. as n → ∞. So also θ∗ → θ0.
So

−ℓ′′(θ∗) = −ℓ′′(X; θ∗) = n.
1

n

n∑
1

[−ℓ′′(Xi; θ
∗)]

∼ nE[−ℓ′′(Xi; θ
∗)] (LLN)

= nI(θ∗) (definition of information per reading)

∼ nI(θ0) (θ∗ → θ0).

By I.3,

(θ̂ − θ0)
√
nI(θ0) → Φ, (θ̂ − θ0)

2.nI(θ0) → Φ2 = χ2(1),

using Φ2 as shorthand for ‘the distribution of the square of a standard normal
random variable’. So

−2 log λ → χ2(1). //

Higher Dimensions. If θ = (θr, θs) is a vector parameter, with
θr an r-dimensional parameter of interest,
θs an s-dimensional nuisance parameter,

to test H0 : θr = θr,0 v. H1 : θr unrestricted. Similar use of the large-sample
theory of MLEs for vector parameters (which involves Fisher’s information
matrix) gives

Theorem (Wilks, 1938). Under the usual regularity conditions,

−2 log λ → χ2(r) (n → ∞).

Note that the dimensionality s of the nuisance parameter plays no role:
what counts is r, the dimension of the parameter of interest (i.e., the differ-
ence in dimension between H1 and H0). (We think here of a fully specified
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parameter, as in H0, as a point – of dimension 0, and of H1 of dimension
r, like θr. There need not be any vector-space structure here. Recall that
degrees of freedom (df) correspond to effective sample size, and that for every
parameter we estimate we ‘use up’ one df, so reducing the effective sample
size by the number of parameters we estimate, so reducing also the available
information. For background, see e.g. [BF], Notes 3.8, 3.9.)

Example: Normal means N(µ, σ2), σ unknown.
Here µ is the parameter of interest, σ is a nuisance parameter – a pa-

rameter that appears in the model, but not in the hypothesis we wish to
test.

H0 : µ = µ0 v. H1 : µ unrestricted.

L =
1

σn(2π)n/2
. exp{−1

2

n∑
1

(xi − µ)2/σ2},

L0 =
1

σn(2π)n/2
. exp{−1

2

n∑
1

(xi − µ0)
2/σ2} =

1

σn(2π)n/2
. exp{−1

2
nS2

0/σ
2},

in an obvious notation. The MLEs under H1 are µ̂ = X̄, σ̂2 = S2, as before,
and under H0, we obtain as before σ = S0. So

L1 =
e−

1
2
n

Sn(2π)
1
2
n
; L0 =

e−
1
2
n

Sn
0 (2π)

1
2
n
.

So
λ := L0/L1 = Sn/Sn

0 .

Now

nS2
0 =

n∑
1

(Xi − µ0)
2 =

∑
[(Xi − X̄) + (X̄ − µ0)]

2

=
∑

(Xi − X̄)2 + n(X̄ − µ0)
2 = nS2 + n(X̄ − µ0)

2

(as
∑
(Xi − X̄) = 0):

S2
0

S2
= 1 +

(X̄ − µ0)
2

S2
.

But t := (X̄ − µ0)
√
n− 1/S has the Student t-distribution t(n − 1) with n

df under H0, so
S2
0/S

2 = 1 + t2/(n− 1).
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The LR test is: reject if
λ+ (S/S0)

n too small;
S2
0/S

2 = 1 + t2/(n− 1) too big;
t2 too big: |t| too big, which is the Student t-test:
The LR test here is the Student t-test.

2. Normal variances N(µ, σ2), µ unknown (a nuisance parameter). Test

H0 : σ = σ0 v. H1 : S > σ′.

Under H0, ℓ = const− n log σ0 − 1
2

∑
(Xi − µ)2/σ2

0.
∂ℓ/∂µ = 0:

∑n
1 (Xi − µ) = 0:

µ̂ =
1

n

n∑
1

Xi = X̄.

So

L0 =
1

σn
0 (2π)

n/2
. exp{−1

2

n∑
1

(xi − µ0)
2/σ2

0} =
1

σn
0 (2π)

n/2
. exp{−1

2
nS2/σ2

0}.

Under H1, ℓ = const−n log σ− 1
2

∑
(Xi −µ)2/σ2. As above, the maximising

value for µ is X̄, and as
∑n

1 (Xi − X̄)2 = nS2,

ℓ = const− n log σ − 1

2

∑
(Xi − µ)2/σ2 = const− n log σ − 1

2
nS2/σ2.

∂/∂σ = 0: −n/σ + nS2/σ3 = 0: σ2 = S2.
There are two cases: I. σ0 < S. II. σ0 ≥ S.
In Case I, S belongs to the region σ > σ0 defining H1, so the maximum

over H1 is attained at S, giving as before

L1 =
e−

1
2
n

Sn(2π)
1
2
n
. So λ =

L0

L1

=
Sn

Sn
0

exp
{
−1

2
n
[S2

σ2
0

− 1
]}
. (Case I).

In Case II, the maximum of L is attained at S (L increases up to S, then
decreases), so its restricted maximum in the range σ ≥ σ0 ≥ S is attained at
σ0, the nearest point to the overall maximum S. Then

L1 =
1

σn
0 (2π)

n/2
. exp{−1

2

n∑
1

(xi − µ0)
2/σ2

0} = L) : λ = L0/L1 = 1

(Case II).
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Comparing, λ is a function of T := S/σ0:

λ = 1 if T ≤ 1 (Case II), T n exp{−1

2
n[T 2 − 1]} if T ≥ 1 (Case I).

Now f(x) := xn exp{−1
2
n[x2 − 1]} takes its maximum on (0,∞) at x = 1,

where it takes the value 1 (check by calculus). So (check by graphing λ
against T !) the LR test is:

reject if λ too small, i.e. T too big, i.e. S too big – as expected.
Under H0, nS

2/σ2
0 is χ2(n− 1)... If cα is the upper α-point of χ2(n− 1),

reject if nS2/σ2
0 ≥ cα, i.e., reject if S ≥ σ2

0cα/n.
Similarly ifH1 is σ < σ) and dα is the lower α-point: reject if S2 ≤ σ2

0dα/n.
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III. NON-PARAMETRICS

1. EMPIRICALS; THE GLIVENKO-CANTELLI THEOREM
The first thing to note about Parametric Statistics is that the parametric

model we choose will only ever be approximately right at best. We recall
Box’s Dictum (the English statistician George E. P. BOX (1919 –)): al mod-
els are wrong – some models are useful. For example: much of Statistics uses
a normal model in one form or other. But no real population will ever be
exactly normal. And even if it were, when we sampled from it, we would
destroy normality, e.g. by the need to round data to record it; rounded data
is necessarily rational, but a normal distribution takes irrational values a.s.

So we avoid choosing a parametric model, and ask what can be done with-
out it. We sample from an unknown population distribution F . One impor-
tant tool is the empirical (distribution function) Fn of the sample X1, . . . , Xn.
This is the (random!) probability distribution with mass 1/n at each of the
data points Xi. Writing δc for the Dirac distribution at c – the probability
measure with mass 1 at c, or distribution function of the constant c –

Fn :=
1

n

n∑
1

δXi
.

The next result is sometimes called the Fundamental Theorem of Statistics.
It says that, in the limit, we can recover the population distribution from
the sample: the sample determines the population in the limit. It is due to
V. I. GLIVENKO (1897-1940) and F. P. CANTELLI (1906-1985), both in
1933, and is a uniform version of Kolmogorov’s Strong Law of Large Num-
bers (SLLN, or just LLN), also of 1933.

Theorem (Glivenko-Cantelli Theorem, 1933).

sup
x

|Fn(x)− F (x)| → 0 (n → ∞) a.s.

Proof. Think of obtaining a value ≤ x as Bernoulli trials, with parameter (=
success probability) p := P (X ≤ x) = F (x). So by SLLN, for each fixed x,

Fn(x) → F (X) a.s.,

as Fn(x) is the proportion of successes. Now fix a finite partition −∞ =
x1 < x2 < . . . < xm = +∞. By monotonicity of F and Fn,

sup
x

|Fn(x)− F (x)| ≤ max
k

|Fn(xk)− F (xk)|+max
k

|F (xk+1 − F (xk)|.
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Letting n → ∞ and refining the partition indefinitely, we get

lim supn sup
x

|Fn(x)− F (x)| ≤ sup
x

∆F (x) a.s.,

where ∆F (x) denotes the jump of F (if any – there are at most countably
many jumps!) at x. This proves the result when F is continuous.

In the general case, we use the Probability Integral Transformation (PIT,
IS, I). Let U1, . . . , Un . . . be iid uniforms, Un ∼ U(0, 1). Let Yn := g(Un),
where g(t) := sup{x : F (x) < t}. By PIT, Yn ≤ x iff Un ≤ F (x), so the Yn

are iid with law F , like the Xn, so wlog take Yn = Xn. Writing Gn for the
empiricals of the Un,

Fn = Gn(F ).

Writing A for the range (set of values) of F ,

sup
x

|Fn(x)− F (x)| = sup
t∈A

|Gn(t)− t| ≤ sup
[0,1]

|Gn(t)− t|,→ 0 a.s.,

by the result (proved above) for the continuous case. //

If F is continuous, then the argument above shows that

∆n := sup
x

|Fn(x)− F (x)|

is independent of F , in which case we may take F = U(0, 1), and then

∆n = sup
t∈(0,1)

|Fn(t)− t|.

Here ∆n is theKolmogorov-Smirnov (KS) statistic, which by above is distribution-
free if F is continuous. It turns out that there is a uniform CLT corresponding
to the uniform LLN given by the Glivenko-Cantelli Theorem: ∆n → 0 at rate√
n. The limit distribution is known – it is the Kolmogorov-Smirnov (KS)

distribution

1− 2
∞∑
1

(−)k+1e−2k2x2

(x ≥ 0).

It turns out also that, although this result is a limit theorem for random
variables, it follows as a special case of a limit theorem for stochastic pro-
cesses. Writing B for Brownian motion, B0 for the Brownian bridge (B0(t) :=
B(t)− t, t ∈ [0, 1]),

Zn :=
√
n(Gn(t)− t) → B0(t), t ∈ [0, 1]
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(Donsker’s Theorem: Monroe D. DONSKER (1925-1991), originally, the
Erdös-Kac-Donsker Invariance Principle). The relevant mathematics here
is weak convergence of probability measures (under an appropriate topology).
Thus, the KS distribution is that of the supremum of Brownian bridge. For
background, see e.g. Kallenberg Ch. 14.
Higher dimensions.

In one dimension, the half-lines (−∞, x] form the obvious class of sets to
use – e.g., by differencing they give us the half-open intervals (a, b], and we
know from Measure Theory that these suffice. In higher dimensions, obvious
analogues are the half-spaces, orthants (sets of the form

∏n
k=1(−∞, xk]), etc.

– the geometry of Euclidean space is much richer in higher dimensions. We
call a class of sets a Glivenko-Cantelli class if a uniform LLN holds for it, a
Donsder class if a uniform CLT holds for it. For background, see e.g.
[vdVW] A. W. van der VAART & J. A. WELLNER, Weak convergence and
empirical processes, with applications to statistics, Springer, 1996, Ch. 2.
This book also contains a good treatment of the delta method in this con-
text – the von Mises calculus (Richard von MISES (1883-1953), or infinite-
dimensional delta method.

Variants on the problem above include:
1. The two-sample Kolmogorov-Smirnov test.

Given two populations, with unknown distributions F , G, we wish to test
whether they are the same, on the basis of empiricals Fn, Gm.
2. Kolmogorov-Smirnov tests with parameters estimated from the data.

A common case here is testing for normality. In one dimension, our hy-
pothesis of interest is whether or not F ∈ {N(µ, σ2) : µ ∈ R, σ > 0}. Here
(µ, σ) are nuisance parameters: they occur in the formulation of the problem,
but not in the hypothesis of interest.

Although the Glivenko-Cantelli Theorem is useful, it does not tell us, say,
whether or not the law F is absolutely continuous, discrete etc. For, there are
discrete G arbitrarily close to an absolutely continuous F (discretise), and
absolutely continuous F arbitrarily close to a discrete F (by smooth approx-
imation to F at its jump points). So sampling alone cannot tell us what type
of law F is – absolutely continuous (with density f , say), discrete, continuous
singular, or some mixture of these. So it makes sense for the statistician to
choose what kind of population distribution he is going to assume. Often
(usually), this will be absolutely continuous; again, it makes sense to assume
what smoothness properties of the density f we will assume. This leads on
to the important subject of density estimation, to which we now turn.
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2. CURVE AND SURFACE FITTING.

We begin with some background. Suppose we have n points (xi, yi), with
the xi distinct, and we wish to interpolate them – find a function f with
f(xi) = yi, i = 1, . . . , n. One can of course do this by linear interpolation –
just draw a line between each adjacent pair of points, obtaining a continuous
piecewise-linear function – but this is not smooth enough for many purposes.
One might guess that as a polynomial of degree n − 1 contains n degrees
of freedom (its n coefficients), it might be possible to interpolate by such a
polynomial, and this is indeed so (Lagrangian interpolation, or Newtonian
divided-difference interpolation). With the xi equally spaced, there is a whole
subject here – the Calculus of Finite Differences (the discrete analogue of the
ordinary (‘infinitesimal’) calculus).

The degree n may be large (should be large – the more data, the better).
But, polynomials of large degree are very oscillatory and numerically unsta-
ble. We should and do avoid them. One way to do this is to use splines.
These are continuous functions, which are polynomials of some chosen low
degree (cubic splines are the usual choice in Statistics) between certain spe-
cial points, called knots (or nodes), across which the function and as many
derivatives as possible are continuous. So a cubic spline is piecewise cubic,
with its values and those of its first two derivatives continuous across the
knots.

Another relevant piece of background is the histogram, familiar from el-
ementary Statistics courses. One represents discrete data diagrammatically,
with vertical bars representing how many data points fall in a given subin-
terval.

Computer implementation is necessary to use methods of this kind in
practice. For a general account using the computer language S (from which
R, and the proprietary package S-Plus, are derived), see e.g.
W. N. VENABLES & B. D. RIPLEY, Modern applied statistics with S, 4th
ed., Springer, 2002, 5.6.

Roughness penalty. Using polynomials of high degree, we can fit the data
exactly. But we don’t do this, because the resulting function would be too
rough (‘too wiggly’). It is better to fit the data approximately rather than
exactly, but obtain a nice smooth function at the end. One way to formalise
this (due to I. J. Good (1916-2009) and his pupil R. A. Gaskins in 1971) is to
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use a roughness penalty – to measure the roughness of the function by some
integrated measure –

∫
(f ′′)2 is the usual one for use with cubic splines – and

minimise a combination of this and the relevant sum of squares (see Ch. V):

min
n∑
1

(yi − f(xi))
2 + λ2

∫
(f ′′)2.

Here λ2 is the smoothing parameter. It is under the control of the statistician,
who can decide for himself from context how much weight to give to good-
ness of fit (the first term) and how much to smoothness (roughness being
measured by the second term).

1. Density estimation. Suppose we want to find as good a fit to the data as
possible using a density function with smoothness properties that we have
chosen (see above). One way to do this is to make two key choices:
(a) the kernelK(.). This is a density with the required smoothness properties;
(b) the bandwidth h > 0 (also called the window width).
One then defines the kernel density estimator

f̂(x) :=
1

nh

n∑
1

K
(x−Xi)

h

)
.

This is again a density, with the same smoothness properties as K. It turns
out that the properties of f̂ are mainly determined by h, and the choice of
K is less important. We must refer for detail here to a specialised text, e.g.
B. W. SILVERMAN, Density estimation for statistics and data analysis,
Chapman & Hall, 1986;
R. A. TAPIA & J. R. THOMPSON, Nonparametric probability density es-
timation, Johns Hopkins University Press, 1978.
Such books contain graphics, showing how the kernel density estimates com-
pare with the histograms of the data.

2. Non-parametric regression. We discuss parametric regression in Ch. V be-
low. The ideas above can be used to extend these ideas to a non-parametric
setting, using roughness penalties, cubic splines etc. We refer for detail to,
e.g., [BF], 9.2.

3. Volatility surfaces. The volatility σ in the Black-Scholes formula is un-
known, and has to be estimated – either as historic volatility from time-series
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data (Ch. VI), or as implied volatility – the Black-Scholes price is (continu-
ous and) increasing in σ (‘options like volatility’), so one can infer ‘what the
market thinks σ is’ from the prices at which options currently trade. Closer
examination reveals that the volatility is not constant, but varies – e.g., with
the strike price (‘volatility smiles’). Volatility is observed to vary so unpre-
dictably that it makes sense to model is as a stochastic process (stochastic
volatility, SV). Market data is discrete, but for visual effect it is better to
use computer graphics and a continuous representation of such volatility sur-
faces. For a monograph treratment, see
Jim GATHERAL, The volatility surface: A practitioner’s guide, Wiley, 2006.
Note. The VIX – volatility index (colloquially called the ‘fear index’) is widely
used, and is the underlying for volatility derivatives. It has even affected lit-
erature (see e.g. John Harris’ novel The fear index, Hutchinson, 2011).

3. NON-PARAMETRIC LIKELIHOOD
At first glance, ‘non-parametric likelihood’ seems a contradiction in terms

(an oxymoron – ‘square circle’, etc.) But it turns out that maximum-
likelihood estimation (MLE) can indeed be usefully combined with non-
parametrics. First, we interpret the empirical Fn as a non-parametric MLE
(NPMLE) for the unknown true distribution F . For, if the data is {x1, . . . , xn},
the likelihood of F is L(F ) :=

∏n
1∆F (xi) (where ∆F (x) := F (x)− F (x−) is

the probability mass on x), F ({x})). It makes sense to restrict attention to
distributions F with support in {x1, . . . , xn}, that is, absolutely continuous
wrt the empirical Fn: F << Fn, and Fn does indeed maximise the likelihood
over these F (Kiefer & Wolfowitz, 1956). Then it makes sense to call T (Fn)
a NPMLE for T (F ), where T is some functional – the mean, for example.

Let X,X1, . . . , Xn . . . be iid random p-vectors, with mean EX = µ and
covariance matrix Σ of rank q. In higher dimensions, the distribution func-
tion, P (. ≤ .), which leads to confidence intervals, is replaced by P (. ∈ .),
which leads to confidence regions (which covers the unknown parameter with
some probability); convexity is a desirable property of such confidence re-
gions. For r ∈ (0, 1), let

Cr,n := {
∫
XdF : F << Fn, L(F )/L(Fn) ≥ r}.

Then Cr,n is a convex set, and

P (µ ∈ Cr,n) → P (χ2(q) ≤ −2 log r) (n → ∞)
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(the rate is O(1/
√
n) if E[∥X∥4] < ∞). This is a non-parametric analogue

of Wilks’ Theorem (II.3 above) (A. Owen 1990; P. Hall 1990): ”−2 logLR ∼
χ2(q)”. For a monograph account, see
A. OWEN, Empirical likelihood, Chapman and Hall, 2001.

In view of results of this type, it is common practice, when we want the
distribution of T (F ) when F is unknown, to use T (Fn) as an approximation
for it. This is commonly known as a plug-in estimator (just plug it in as an
approximation when we need the exact answer but do not know it); ‘empir-
ical estimator’, or ‘NPMLE’, would also be reasonable names.

Suppose we want to estimate an unknown density f , which is known to
be decreasing on [0,∞)(example: the exponential). A density is the deriva-
tive of a distribution; a concave function has a decreasing derivative (when
differentiable). The NPMLE fn of such a density is the (left-hand) derivative
of the least concave majorant of Fn (Grenander, 1956). This example is inter-
esting in that a CLT is known for it, but with an unusual rate of convergence
– cube-root asymptotics:

n1/3(fn(t)− f(t)) → |4f ′(t)f(t)|1/3argmaxh(B(h)− h2),

with B BM and argmax the argument (= point) at which the maximum is
attained (Kim and Pollard 1990).
Semi-parametrics.

Consider a multidimensional density

f(x) = const.g(Q(x)), Q(x) = (x− µ)TΣ−1(x− µ).

Here g : R+ → R+ is a function, the density generator, to be estimated. This
is the non-parametric part of the model; (µ,Σ) is as above, the parametric
part of the model. The model as a whole is then called semi-parametric.

Such models are very suited to financial applications. They have been
extensively studied; see e.g.
[BKRW] P. J. BICKEL, C. A. J. KLAASSEN, Y. RITOV and J. A. WELL-
NER, Efficient and adaptive estimation for semiparametric models, Springer,
1998.
It turns out that in some cases, ignorance of one part of the model imposes
no loss of efficiency when estimating the other part. This is the case for
the elliptic model above, essentially for reasons to do with invariance under
the action of the affine group. See [BKRW], 4.2.3, 6.3.9, 7.2.4, 7.8.3 for the
theory, [BFK] for some applications.
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