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IV. BAYESIAN STATISTICS

1. CLASSICAL STATISTICS AND ITS LIMITATIONS.
Broadly speaking, statistics splits into two main streams:

(i) classical, or frequentist, and
(ii) Bayesian.

Much of classical statistics is devoted to the following general areas: Esti-
mation of parameters (I), Hypothesis testing (II). Again, this is not exhaus-
tive: the main remaining area is Non-parametric statistics (III).

Estimation of parameters itself splits, into
(ia). Point estimation [ e.g., maximum-likelihood estimates],
(ib). Interval estimation [e.g., confidence intervals].
Both these are open to interpretational objections. A point estimate is a
single number, which will almost certainly be wrong [i.e., will differ from the
value of the parameter it estimates]. How wrong? And what should we do
about this?
A confidence interval is more informative, because it includes an error esti-
mate. For instance, its mid-point can be regarded as a point estimate, and
half its length as an error estimate - leading to conclusions of the form

θ = 3.76± 0.003 (∗)

- with confidence 95% [or 99 %, or whatever]. What does this mean? It is
not a probability statement:
either θ lies between 3.73 and 3.79 [when (*) is true, so holds with probability
100 %]
or it doesn’t [when (*) is false, so holds with probability 0 %].
Problem: We don’t know which!
Interpretation. If a large number of statisticians independently replicated the
analysis leading to (*), then about 95 % of them would succeed in producing
confidence intervals covering the unknown parameter θ. But
(a) We wouldn’t know which 95 %,
(b) This is of doubtful relevance anyway. The large number of independent
replications will usually never take place in practice. So confidence state-
ments like (*) lack, in practice, a direct interpretation. [They are ‘what
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happens to probability statements in classical statistics when we put the
numbers in’.]

A further problem is that small changes in our data can lead to abrupt
discontinuities in our conclusions. In borderline situations, θ ‘just within’
the confidence interval and ‘just outside’ represent diametrically opposite
outcomes, but the data may be very close. Small changes in input should
only lead to small changes in output, rather than abrupt changes.

Hypothesis testing is open to similar objections. It is usual to have a null
hypothesis, H0, representing our present theory (the ‘default option’), and
an alternative hypothesis, H1, representing some proposed alternative theory.
At the end of the investigation, we have to choose between two alternatives.
We may be wrong: we may
reject H0 when it is true, and choose H1 [Type I error, probability α, the
significance level], or
reject H1 when it is true, and choose H0 [Type II error, probability β].
We then have a trade-off between α and β. It is not always clear how to
do this sensibly, still less optimally [it is customary to choose α = 0.05 or
0.01, and then try to minimise β, but this is merely conventional]. Again,
problems present themselves:
(i) We won’t know whether our choice between H0 and H1 was correct,
(ii) Small changes in the data can lead to abrupt changes between choosing
H0 and choosing H1.

Thus both the main branches of classical parametric statistics lead to
abruptly discontinuous conclusions and present interpretational difficulties.
One justification for Bayesian statistics is that it avoids these. There are
many others: we shall argue for Bayesian statistics below on its merits.

2. PRIOR KNOWLEDGE AND HOW TO UPDATE IT.

The difficulties identified above arise because in classical statistics we rely
entirely on the data, that is, on the sample we obtained. The mathematics
involved in classical statistics amounts to comparing the sample we actually
obtained with the large (usually, infinite) class of hypothetical samples we
might have obtained but didn’t. These include the samples that we would
obtain if we repeated our sampling independently – or that other statisticians
would obtain if they independently replicated our work. This is where the
term ‘frequentist’ for classical statistics originates: e.g., in 95 % confidence
intervals, independently replicated confidence intervals would cover the pa-
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rameter θ with frequency 0.95.
The other aspect of classical statistics crucial for our purposes is that it

ignores everything before sampling. This is often unreasonable. For instance,
we may know a good deal about the situation under study, based on prior
experience. Such situations are typical in, e.g., industrial quality control:
suppose we are employed by a rope manufacturer, and are testing the break-
ing strain of ropes in a current batch. We may have to hand large amounts
of data obtained from tests on previous batches from the same production
line. In hypothesis testing, such prior knowledge is tacitly assumed, because
we need it to be able to formulate H0 and H1 sensibly. But we may not be
willing to enter the ‘accept or reject’ framework of hypothesis testing [which
some statisticians believe is inappropriate and damaging]: how then can we
use prior knowledge? In the estimation framework also, we may know a lot
about θ before sampling [as in the rope example above]: indeed, if we do
not have some prior knowledge of the situation to be studied, we would in
practice not have enough prior interest in it to be willing to invest the time,
trouble and money to study it statistically.

Bayesian statistics addresses these aspects by providing a framework in
which
1. The statistician knows something before sampling: he has some prior
knowledge.
2. He then draws a sample, and analyses the data to extract some relevant
information.
3. He then updates his prior information with his data (or sample) informa-
tion, to obtain posterior information

(prior: before (sampling); posterior: after (sampling)).
This verbal description of the Bayesian approach is attractive, because

it resembles how we learn. Life involves (indeed, largely consists of) a con-
stant, ongoing process of acquiring new information and using it to update
our previous (‘prior’) information/beliefs/attitudes/policies.

To implement the Bayesian approach, we need some mathematics. The
formulae below derive from the work of the English clergyman
Thomas BAYES (1702-1761): An essay towards solving a problem in the
doctrine of chances (1763, posth.).
Recall that if A,B are events of positive probability,

P (A) > 0, P (B) > 0,

3



the conditional probability of A given (or knowing) B is

P (A|B) := P (A ∩B)/P (B).

Symmetrically,

P (B|A) := P (B ∩ A)/P (A) = P (A ∩B)/P (A).

Combining,
P (A ∩B) = P (A|B)P (B) = P (B|A)P (A),

or

P (B|A) = P (A|B)P (B)/P (A) (BAYES’ FORMULA, or BAYES’ THEOREM).

Interpretation.
1. Think of A as a ‘cause’, B as an ‘effect’. We naturally first think
of P (effect B|cause A). We can use Bayes’ formula to get from this to
P (cause A|effect B) (think of B as an effect we can see, A as an effect we
can’t see).
2. Suppose we are interested in event B. We begin with an initial, prior
probability P (B) for its occurrence. This represents how probable we ini-
tially consider B to be [this depends on us: we will have to estimate P (B)!].
Suppose we then observe that event A occurs. This gives us new information,
which affects how probable we should now consider B to be, after observing
A [or, to use the technical term, a posteriori]. Bayes’ theorem tells us how
to do this updating: we multiply by the ratio P (A|B)/P (A):

P (B|A) = P (B).P (A|B)/P (A) :

posterior probability of B = prior probability of B × updating ratio.
We first observe some extreme cases.

Independence. If A, B are independent, P (A ∩B) = P (A).P (B), so

P (B|A) = P (A ∩B)/P (A) = P (A).P (B)/P (A) = P (B),

and similarly P (A|B) = P (A): updating ratio = 1, posterior probability =
prior probability – conditioning on something independent has no effect.
Inclusion.
1. A ⊂ B: here, P (A ∩ B) = P (A), P (A|B) = P (A ∩ B)/P (B) =
P (A)/P (B);
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updating ratio P (A|B)/P (A) = 1/P (B), posterior probability = 1.
2. B ⊂ A: here, P (A∩B) = P (B), P (A|B) = P (A∩B)/P (B) = P (B)/P (B) =
1;
updating ratio P (A|B)/P (A) = 1/P (A), posterior probability = P (B)/P (A).
Partitions. The event B partitions the sample space Ω (the space of all pos-
sible outcomes) into two disjoint events B,Bc whose union is Ω. Then A is
the disjoint union of A ∩B and A ∩Bc, so

P (A) = P (A ∩B) + P (A ∩Bc) = P (A|B)P (B) + P (A|Bc)P (Bc),

by definition of conditional probability. Similarly, if B1, B2, · · · , Bn form a
partition (are disjoint events with union Ω), A is the disjoint union of events
A ∩B1, · · · , A ∩Bn. So by the additivity property of probability,

P (A) = Σn
r=1P (A∩Br) = Σn

r=1P (A|Br)P (Br) (FORMULA OF TOTAL PROBABILITY),

using the definition of conditional probability again.
Such expressions are often used for the denominator in Bayes’ formula:

P (Br|A) = P (Br)P (A|Br)/P (A) = P (Br)P (A|Br)/ΣkP (Bk)P (A|Bk).

3. PRIOR AND POSTERIOR DENSITIES.
Suppose now we are studying a parameter θ. Suppose we have data x

[x may be a single number, i.e. a scalar, or a vector x = (x1, · · · , xn) of
numbers. Following O’Hagan [O’H] (for references, see Day 0), we shall
simply write x in both scalar and vector cases.] Recall that x is an observed
value of a random variable, X say. In the density case, this random variable
has a (probability) density (function), f(x) say, a non-negative function that
integrates to 1:

f(x) ≥ 0,
∫
f(x)dx = 1

(here and below, integrals with limits unspecified are over everything).
Interpretation. P (X ∈ A) =

∫
A f(x)dx for all subsets A of the real line

R [actually, we need to restrict to suitable – ‘measurable’ – sets A, but it
suffices for our purposes to consider intervals or half-lines. For instance, if
A = (−∞, x],

F (x) := P (X ∈ (−∞, x]) = P (X ≤ x) =
∫ x

−∞
f(y)dy ∀x ∈ R;
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as x varies, F (x) gives the (probability) distribution (function) of X.]
In brief: the density f(x) expresses, or describes, the uncertainty in the data
x.

The distinctive feature of Bayesian statistics is that it treats parameters
θ in the same way as data x. Our initial (prior) uncertainty about θ should
also be described by a density f(θ):

f(θ) ≥ 0,
∫ ∞

−∞
f(θ)dθ = 1,

P (θ ∈ A) =
∫
A
f(θ)dθ ∀A ⊂ R,

where the probability on the left is a prior probability. The analogue for
densities of Bayes’ formula

P (B|A) = P (B)P (A|B)/P (A)

now becomes
f(θ|x) = f(θ)f(x|θ)/f(x). (∗)

The density on the left is the posterior density of θ given the data x; it
describes our uncertainty about θ knowing x.

Now densities integrate to 1:∫
f(θ|x)dθ = 1,

so
∫
[f(θ)f(x|θ)/f(x)]dθ = 1:∫

f(θ)f(x|θ)dθ = f(x).

Combining,

f(θ|x) = f(θ)f(x|θ)/
∫
f(θ)f(x|θ)dθ.

In the discrete case, θ and/or xmay take discrete values θ1, θ2, · · ·, x1, x2, · · ·
only, with probabilities f(θ1), f(θ2), · · ·, f(x1), f(x2), · · ·. The above formulae
still apply, but with integrals replaced by sums:

P (X ∈ A) = Σx∈Af(x), P (θ ∈ B) = Σθ∈Bf(θ),

f(x) = Σθf(θf(x|θ),
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f(θ|x) = f(θ)f(x|θ)/Σθf(θ)f(x|θ).

In the formula f(θ|x) = f(θ)f(x|θ)/f(x), it is θ, the parameter under
study, which is the main focus of interest. Consequently, the denominator
f(x) – whose role is simply to ensure that the posterior density f(θ|x) inte-
grates to 1 (i.e., really is a density) – can be omitted (or understood from
context). This replaces the equation above by a proportionality statement:

f(θ|x) ∝ f(θ)f(x|θ)

(here ∝, read as ‘is proportional to’, relates to the variability in θ, which is
where the action is). Now f(x|θ) can be viewed in two ways:
(i) for fixed θ as a function of x. It is then the density of x when θ is the
true parameter value,
(ii) for fixed/known/given data values x as a function of θ. It is then called
the likelihood of θ. Likelihood was systematically studied in the 1920s by the
great English statistician and geneticist R. A. (Sir Ronald) FISHER (1890-
1962); it is crucially important in classical statistics also (e.g., in maximum
likelihood estimation (Ch. I), or likelihood ratio tests (Ch. II)).

The formula above now reads, in words:
posterior density is proportional to prior density times likelihood.
This is the essence of Bayesian statistics. It shows how Bayes’ theorem (of
which this formula is a version) may be used to update the prior informa-
tion on θ before sampling by using the information in the data x – which is
contained in the likelihood factor f(x|θ) by which one multiplies – to give
the posterior information on θ after sampling. Thus posterior information
combines two sources: prior information and data/sample/likelihood infor-
mation.

4. EXAMPLES.
Example 1. Bernoulli trials with Beta prior ([O’H], Ex. 1.4, p.5). Here θ
represents the probability of a head on tossing a biased coin. On the basis
of prior information, θ is assumed to have a prior density proportional to
θp−1(1− θ)q−1 (0 ≤ θ ≤ 1) for p, q > 0:

f(θ) ∝ θp−1(1− θ)q−1 (0 ≤ θ ≤ 1).

Writing

B(p, q) :=
∫ 1

0
θp−1(1− θ)q−1dθ
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(the Beta function),

f(θ) = θp−1(1− θ)q−1/B(p, q).

[We quote the Eulerian integral for the Beta function: for

Γ(p) :=
∫ ∞

0
e−xxp−1dx (p > 0), B(p, q) = Γ(p)Γ(q)/Γ(p+ q) (p, q > 0).]

Note that, as p, q vary, the shape of f(θ) varies – e.g, the graph is u-shaped
if 0 < p, q < 1, n-shaped if p, q > 1. Here p, q are called hyperparameters -
they are parameters describing the parameter θ.

Suppose now we toss the biased coin n times (independently), observing
x heads. Then x is our data. It has a discrete distribution, the binomial
B(n, θ), described by

f(x|θ) =
(
n

x

)
θx(1− θ)n−x (x = 0, 1, · · · , n).

We apply Bayes’ theorem to update our prior information on θ – our prior
values of p, q – by our data x. Now

f(x) =
∫
f(θ)f(x|θ)dθ =

∫ θp−1(1− θ)q−1

B(p, q)
.

(
n

x

)
θx(1− θ)n−xdθ

=

(
n

x

)
.

1

B(p, q)
.
∫ 1

0
θp+x−1(1− θ)q+n−x−1dθ =

(
n

x

)
.
B(p+ x, q + n− x)

B(p, q)
.

So Bayes’ theorem gives

f(θ|x) = f(θ)f(x|θ)/f(x) =
(
n

x

)
.

1

B(p, q)
.θp+x−1(1−θ)q+n−x−1/

(
n

x

)
.
B(p+ x, q + n− x)

B(p, q)

or

f(θ|x) = θp+x−1(1− θ)q+n−x−1

B(p+ x, q + n− x)
.

The posterior density of θ is thus another Beta density, B(p+ x, q + n− x).
Summarising:
• prior B(p, q) is updated by data x heads in n tosses to posterior B(p +
x, q + n− x).
Graphs. To graph the three functions of θ – prior, likelihood and posterior –
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first find their maxima.
Likelihood: f(x|θ) has a maximum where log f(x|θ) has a maximum, i.e.
where
x log θ + (n− x) log(1− θ) has a maximum, i.e. where

x

θ
− n− x

1− θ
= 0 : x− xθ = nθ − xθ : θ = x/n.

Prior: similarly, f(θ) has a maximum where log f(θ) does, i.e. where

p− 1

θ
− q − 1

1− θ
= 0 : p− pθ − 1 + θ = qθ − θ : θ = (p− 1)/(p+ q − 2).

Posterior: replacing p, q by p+ x, q + n− x, f(θ|x) has a maximum where

θ = (p+ x− 1)/(p+ q + n− 2).

Now

p+ x− 1

p+ q + n− 2
= λ(

x

n
)+(1−λ)(

p− 1

p+ q − 2
), where λ =

n

n+ p+ q − 2
:

the posterior maximum is a ‘weighted average’ of the prior and likelihood
maxima, with weights 1 − λ = (p + q − 2)/(n + p + q − 2), λ = n/(n + p +
q − 2) as above. When p > 1, q > 1, p + q − 2 > 0 and both weights are
positive: this is then a genuine weighted average, a convex combination or
mixture. The posterior combines, or synthesises, the prior and the likelihood:
it compromises between them by giving something intermediate.
Note. 1. When p, q > 1, the relative weight n on the likelihood maximum is
the sample size, that is, of how much data information we have; the relative
weight p+q−2 on the prior maximum is a measure of how concentrated about
its maximum the prior density is – that is, of how much prior information we
have. Thus both weights have clear interpretations, and the weighting has a
clear interpretation as a compromise between them.
2. For an estimator θ̂ of a parameter θ, recall that the variance var θ̂ measures
the degree of uncertainty/spread/scatter of the values of θ̂ about the mean
Eθ̂ [= θ if θ̂ is unbiased]. Desirable properties of estimators include:
(i) bias Eθ̂ − θ zero or small,
(ii) variance var θ̂ minimum or small - that is, its reciprocal 1/var θ̂ maximum
or large.
It is often preferable to work with the reciprocal of the variance, 1/var θ̂,
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rather than the variance itself.
Definition. For an estimator θ̂ of a parameter θ, the precision of θ̂ is
prec θ̂ := 1/var θ̂.
Example 2. Normal family with normal prior ([O’H], Ex. 1.5 p.7). Suppose
x is the sample mean of a sample of n independent readings from a normal
distribution N(θ, σ2), with σ known and θ the parameter of interest. So x is
N(θ, σ2/n):

f(x|θ) = 1√
2π.σ/

√
n
exp{−1

2
(x− θ)2/

σ2

n
}.

Suppose that on the basis of past experience [prior knowledge] the prior
distribution of θ is taken to be N(µ, τ 2):

f(θ) =
1√
2πτ

exp{−1

2
(θ − µ)2/τ 2}.

Now f(x) =
∫
f(θ)f(x|θ)dθ:

f(θ)f(x|θ) = 1

2π.τσ/
√
n
. exp{−1

2

[(θ − µ)2

τ 2
+

(x− θ)2

σ2/n

]
}.

The RHS has the functional form of a bivariate normal distribution. So
to evaluate the θ-integration, we need to complete the square (cf. solving
quadratic equations!). First,

(x− θ)2 = [(x− µ)− (θ − µ)]2 = (x− µ)2 − 2(x− µ)(θ − µ) + (θ − µ)2.

We write for convenience

c :=
1

τ 2
+

1

σ2/n
.

Then

f(θ)f(x|θ) = const. exp{−1

2

[
c(θ − µ)2 − 2

σ2/n
(θ − µ)(x− µ) + function of x

]
}

= const. exp{−1

2
c
[
(θ − µ)2 − 2(θ − µ)(x− µ)

cσ2/n
+ function of x

]
}

= const. exp{−1

2
c
(
θ − µ− x− µ

cσ2/n

)2
+ function of x}

(this last step is ‘completing the square’).
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