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6. FURTHER BAYESIAN ASPECTS.
1. Posterior means [O’H] 1.25, p.15]. If t is an estimate of θ given data x,
the mean squared error is

E[(t− θ)2|x] = E[t2|x]− 2E[tθ|x] + E[θ2|x] = t2 − 2tE[θ|x] + E[θ2|x]

(t is a statistic, that is, a function of the data x, so is known when x is known,
and can be taken out of the expectation signs). Add and subtract (E[θ|x])2:

E[(t− θ)2|x] = (t− E[θ|x])2 + var(θ|x).

Thus the value of t which minimises the posterior expected squared error is

t = E[θ|x],

the posterior mean. This now has two roles:
(i) minimising mean square error,
(ii) location summary of the posterior distribution.

2. Multimodal distributions [O’H] 2.8, p. 31]. One should graph the posterior
distribution, to check on shape characteristics, such as the number of modes
and skewness properties.

A bimodal density may indicate a non-homogeneous population, which
could - or should - be broken down.
E.g.: Adult height is bimodal. For, males are several inches taller than
females on average. In such cases, it is usually better to decompose into
more homogeneous sub-populations and analyse these separately.

If f(θ) has k modes, separated by k − 1 antimodes ti, let C1 = (−∞, t1),
C2 = [t1, t2), · · ·Ck−1 = [tk−2, tk−1), Ck = [tk−1,∞). Then f induces a density
fi on each Ci by

fi(θ) := f(θ)/ci if θ ∈ Ci, 0 else, ci :=
∫
Ci

f(θ)dθ

(so Σk
1ci = 1). This represents the k-modal f as a mixture of the k unimodal

fi:
f(θ) = Σk

1cifi(θ).
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Now let ϕ be a random variable taking values 1, · · · , k with probabilities
P (ϕ = i) = ci: θ|ϕ = i has density fi. The Conditional Variance Formula,

var(θ) = E[var(θ|ϕ)] + var[E(θ|ϕ)]

decomposes the variance of θ into the within-mode variance (the first term
on the RHS) and between-mode variance (2nd term on RHS).

For multimodal densities, overall summary statistics provide limited in-
sight, and it is usually better to decompose by modes, to reduce to the
unimodal case.

3. Density plots for bivariate densities [O’H] 2.9, p. 31]. A full density plot
for two-dimensional variables needs three dimensions, so computer graphics.
A partial density plot can be provided in two dimensions by drawing con-
tours. One can learn to read a contour plot as one can learn to read a map, of
which one already has some experience. Here, multimodality (above) shows
up as the presence of several different peaks or summits (local maxima).
These may be highly revealing. For instance, in B. W. SILVERMAN’s book
Density Estimation (Chapman & Hall), a contour plot arising in a case study
in medical statistics is shown. Here the presence of two peaks correctly sug-
gested that two different forms of the disease existed, for which two different
clinical treatments were adopted.

The Bivariate Normal distribution (V.2) is a classic case in which the
contour plot is unimodal: there is only one peak, and the contours are ellip-
tical. This can be generalised, to weaken the strong assumption of bivariate
normality: the class of elliptically contoured distributions has many of the
desirable properties of the bivariate normal, but is much more general, so
more flexible. It can be used, for instance, to model densities with thicker
tails than the normal.

4. Repeated use of Bayes’ Theorem [O’H] 3.5, p. 66]. Suppose now our data
x is partitioned into (x1, x2), where we observe x1 first and x2 second. With
prior f(θ), we have two stages:
Stage 1. Posterior

f(θ|x1) = f(θ)f(x1|θ)/f(x1), f(x1) =
∫
f(θ)f(x1|θ)dθ. (i)

Stage 2. The prior density for stage 2 is the posterior density above after
stage 1. The likelihood for stage 2 is f(x2|θ, x1). So the posterior density
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after stage 2 is

f(θ|x1, x2) = f(θ|x1)f(x2|θ, x1)/f(x2|x1), f(x2|x1) :=
∫
f(θ|x1)f(x2|θ, x1)dθ.

(ii)
Substitute f(θ|x1) from (i) into (ii):

f(θ|x1, x2) =
f(θ)f(x1|θ)f(x2|θ, x1)

f(x1)f(x2|x1)
.

Now f(x2|x1) := f(x1, x2)/f(x1), so the denominator is f(x1, x2). Similarly,
the numerator is

f(θ).
f(θ, x1)

f(θ)
.
f(θ, x1, x2)

f(θ, x1)
= f(θ, x1, x2) = f(θ)f(x1, x2|θ).

So
f(θ|x1, x2) = f(θ).f(x1, x2|θ)/f(x1, x2),

the usual result of Bayes’ Theorem for updating by the whole data x =
(x1, x2) in one step. So:

Proposition. If data x = (x1, x2) arrives in two stages, with x1 first and x2

second, two applications of Bayes’ Theorem, updating by x1 first, then by
x2 given x1, is equivalent to one application of Bayes’ Theorem updating by
x = (x1, x2).

Corollary. If data x = (x1, · · · , xn) arrives successively in n stages, n
applications of Bayes’ Theorem - updating by xi given x1, · · · , xi−1 (i =
1, · · · , n) are equivalent to one application of Bayes’ Theorem, updating by
x = (x1, · · · , xn).

The systematic repeated use of Bayes’ theorem is important in the sub-
jects of Time Series (Ch. VI) and Forecasting. In particular, the repeated
recursive use of Bayes’ theorem occurs in the Kalman filter, which is widely
use - for instance, in engineering applications [on-line, or real-time, control
of spacecraft, etc.] and in econometric time-series.

5. Sufficiency [O’H] 3.9, 69]. Suppose now that x = (x1, x2), where x1 is
informative about θ, x2 is uninformative. This is the idea of sufficiency,
already encountered in classical statistics. We give a Bayesian treatment. To
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say that x2 is uninformative means that x2 cannot affect our views on θ, that
is,
(i) f(θ|x) = f(θ|x1, x2) does not depend on x2, i.e.

f(θ|x1, x2) = f(θ|x1), or
f(θ, x1, x2)

f(x1, x2)
=

f(θ, x1)

f(x1)
:

f(θ, x1, x2)

f(θ, x1)
=

f(x1, x2)

f(x1)
, i.e. f(x2|x1, θ) = f(x2|x1) :

(ii) f(x2|x1, θ) does not depend on θ.
Either of (i), (ii), which are equivalent, can be used as the definition of suf-
ficiency in a Bayesian treatment. Notice that (i) is essentially a Bayesian
statement: it is meaningless in classical statistics, as there θ cannot have a
density.

Now recall the classical Fisher-Neyman Factorisation Criterion for suffi-
ciency: the likelihood f(x|θ) factorises as
(iii) f(x|θ), or f(x1, x2|θ), = g(x1, θ)h(x1, x2),
for some functions g, h. As before:

Proposition. x1 is sufficient for θ iff the Factorisation Criterion (iii) holds.

Proof. (ii) ⇒ (iii):

f(x|θ) = f(x1, x2|θ) = f(x1|θ)f(x2|x1, θ) (as in 4 above)

= f(x1|θ)f(x2|x1) (by (ii)),

giving (iii).
(iii) ⇒ (i): By Bayes’ Theorem in the form ‘posterior proportional to prior
times likelihood’, the factor h(x1, x2) in (iii) can be absorbed into the con-
stant of proportionality [which is unimportant: it can be recovered from the
remaining terms, its role being merely to make these integrate to one]. Then
x2 vanishes from the analysis, so does not appear in the posterior, giving (i).
•
Note. This proof is easier than the classical one! To a Bayesian, it is also
more intuitive and revealing.

6. Exponential families. A likelihood f(x|θ) belongs to the exponential family
if it is of the form

f(x|θ) = exp{a(θ)u(x) + b(θ) + k(x)}
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(as usual, we use vector notation: x, θ may be several-dimensional; see be-
low). Exponential families (introduced in 1935-36 by Darmois, Pitman and
Koopman) arise naturally in classical statistics. We quote: if a statistic u(x)
is minimum-variance (‘efficient’) and unbiased for θ, then the likelihood can
be written in the above form (this follows from the conditions for equality
in the Cramér-Rao inequality giving the minimum-variance bound, or ‘in-
formation bound’). By the Fisher-Neyman Factorisation Criterion, u(x) is
sufficient for θ. So efficiency implies sufficiency and membership of an expo-
nential family.

Now efficiency is not a Bayesian concept (it looks at the distribution of
the statistic, so at values we could have seen but didn’t, not just at the
likelihood), nor is unbiasedness (for the same reason). However, sufficiency
is important in Bayesian statistics also (above), and so too are exponential
families.

First, we generalise the exponential family approach to cover several pa-
rameters and several sufficient statistics: call f(x|θ) a member of the k-
parameter exponential family if

f(x|θ) = exp{Σk
1Aj(θ)Bj(x) + C(x) +D(θ)}.

Then by the Fisher-Neyman Factorisation Criterion, B1(x), · · · , Bk(x) are
sufficient statistics for the k parameters A1(θ), · · · , Ak(θ). Suppose the prior
is of the form

f(θ) = f(θ; a1, · · · , ak, d) = exp{Σk
1ajAj(θ) + dD(θ) + c(a1, · · · , ak, d)}.

Then the posterior f(θ|x) ∝ f(θ)f(x|θ), i.e. to

exp{Σk
1Aj(θ)(aj +Bj(x)) + (d+ 1)D(θ)},

i.e. to
f(θ; a1 +B1(x), · · · , ak +Bk(x); d+ 1).

This is a (k+1)-dimensional exponential family. Its importance is that if the
prior belongs to this family, so too does the posterior: the family is closed
under sampling. This property is of crucial importance, partly because it is
so mathematically convenient, partly because it shows up the structure of the
problem. For instance, we shall return below to two of the examples we met
in S2, where the relationship between prior and likelihood can now be seen
in this light to be natural. The prior above is called the natural conjugate
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family to the exponential family above.
Example 1. Bernoulli distribution.

f(x|θ) = θx(1− θ)1−x (x = 0, 1)

=
( θ

1− θ

)x
(1− θ)

= exp{x log
( θ

1− θ

)
+ log(1− θ)} :

here k = 1, A1(θ) = log
(

θ
1−θ

)
, B1(x) = x,C(x) = 0, D(θ) = log(1− θ).

The natural conjugate family is

f(θ; a1, d) = exp{a1A1(θ) + dD(θ) + c(a1, d)}

= exp{a1 log
( θ

1− θ

)
+ d log(1− θ) + c(a1, d)}

= θa1(1− θ)d−a1 exp{c(a1, d)},

which is Beta B(a1, d− a1) as in S2.
2. Normal distribution, N(µ, σ2): θ = (µ, σ2),

f(x|θ) = exp{−1

2

x2

σ2
+

xµ

σ2
− 1

2

µ2

σ2
− log σ − 1

2
log 2π},

k = 2, A1(θ) = 1/σ2, B1(x) = −1
2
x2, A2(θ) = µ/σ2, B2(x) = x,C(x) =

0, D(θ) = −1
2
[log(2πσ2) + µ2/σ2]. The natural conjugate family is

f(θ; a1, a2, d) = exp{a1A1(θ) + a2A2(θ) + dD(θ) + c(a1, a2, d)}

∝ (σ2)−
1
2
d exp{a1

σ2
+

a2µ

σ2
− 1

2
dµ2σ2}.

The exponent is σ2 times

−1

2
d(µ2 − 2a2µ

d
+ a1) = −1

2
d[(µ− a2

d
)2 − a1 −

a2
2

d2
].

Writing m := a2/d, b := −a1 − a2
2/2d,

f(θ; a1, a2, d) ∝ (σ2)−
1
2
d exp{−1

2
d(µ−m)2/σ2 − b/σ2}.

For σ known, this is a normal prior for µ, as in S2. With neither σ nor µ
known (both parameters), this is the natural conjugate prior to the normal
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N(µ, σ2). More generally, one can work with (σ2)−t in place of (σ2)−
1
2
d. Here

m, d, b (and t if present) are hyperparameters for the parameters µ, σ.

7. Asymptotic normality [O’H] 3.18, p. 74]. We recall (or quote) that
in classical statistics, the maximum-likelihood estimator θ̂ of θ based on n
i.i.d. readings x1, · · · , xn is asymptotically normal, with mean θ and variance
1/(nI(θ)), where I(θ) is the Fisher information per reading:

I(θ) := E[(ℓ′(θ))2] = −E[ℓ′′(θ)], ℓ(θ) := log f(x|θ)

the log-likelihood (the likelihood itself is usually written L(θ) in classical
statistics). This result needs some regularity conditions, the principal ones
being
(i) enough smoothness to justify differentiating under the integral sign twice
with respect to θ (as in the derivation of the above equation for the informa-
tion, and in the proof of the Cramér-Rao inequality),
(ii) that the support of the likelihood (the region where it is positive) should
not depend on θ.
Now the above is a large-sample result, in which the sample size n increases.
It is thus natural to expect that in this situation, the data information will
swamp the prior information, and the same result will hold in the Bayesian
case also. This is indeed so; see O’Hagan SS3.18-26 for details.

8. Shrinkage [O’H] 6.42, p. 159]. We have seen that in the Bayesian paradigm
the posterior gives a compromise between the prior and the likelihood. The
effect is to ‘pull’ the likelihood towards the prior. Thus a Bayesian estimate
typically ‘pulls’ a classical estimate towards a prior estimate. With several
parameters - with the same prior mean, say - their classical estimates will all
be pulled towards the same prior estimate. It is thus typical of the Bayesian
paradigm that estimators are less spread out than in the classical paradigm,
a phenomenon known as shrinkage.

Similar shrinkage effects occur in higher dimensions (Ch. VII) – the
James-Stein phenomenon.

9. Bayes Linear Estimates [O’H] 6.48 p. 163]. Recall 1 - Posterior means.
Take expectations of 1 over x, and use the Conditional Mean Formula (E[E(.|x)] =
E):

D := E[(d(x)− θ)2] = E[(d(x)− E[θ|x])2] + Evar(θ|x), (∗)
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which is minimised by the posterior mean d(x) = E(θ|x). Suppose now that
d(x) is a linear function, a+ b′z, where z = z(x) and b are vectors:

D = E[(a+ b′z − θ)2]

= E[a2 + 2ab′z + b′zz′b− 2aθ − 2b′zθ + θ2]

= a2 + 2ab′Ez + b′E(zz′)b− 2aEθ − 2b′E(zθ) + E(θ2).

Add and subtract [E(θ)]2, (b′Ez)2 = b′EzEz′b and 2b′EzEθ, and observe
that E(zz′) − EzEz′ is the covariance matrix V := varz of z and E(zθ) −
EzEθ is the vector c of covariances between θ and the elements of the vector
z. We obtain

D = (a+ b′Ez − Eθ)2 + b′(varz)b− 2b′cov(z, θ) + varθ. (1)

Write b∗ := V −1c. We show that

D = (a+ b′Ez − Eθ)2 + (b− b∗)′V (b− b∗) +D∗, (2)

where D∗ := V − c′V −1c. For, the second term on the right in (2) is

[b−V −1c]′V [b−V −1c] = b′V b−2b′V V −1c+c′(V −1)′V V −1c = b′V b−2b′c+c′V −1c;

this and the definition of D∗ give (1).
The third term on the right in (2) does not involve a, b, while the first

two are non-negative (the first is a square, the second a quadratic form with
matrix V , non-negative definite as V is a covariance matrix). So the expected
quadratic loss D is minimised by choosing b = b∗, a = −b∗′Ez + Eθ. This
choice gives

d(x) = Eθ + cV −1(z − Ez), c := cov(z, θ), V := var(z).

This gives the Bayes linear estimator of θ based on data z = z(x). From (*),
minimising D means minimising the mean square error in d(x) as an approx-
imation to the posterior mean E(θ|x). Thus the Bayes linear estimator is
the best approximation to the posterior mean (in the sense of mean-square
error) among the class of linear estimators (in z = z(x)).

Note that the Bayes linear estimator depends only on Eθ, Ez, c =
cov(z, θ), V = var(z), that is, only on first and second moments. So to
construct it, we do not need to know the full likelihood, only the first and
second moments of (θ, z(x)), the parameter and the function z in which we
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want the estimator to be linear.
Note that the Bayes linear estimator violates the Likelihood Principle: it

depends on the distribution of z = z(x), not just on the observed likelihood.

10. Odds [O’H] 6.23 p. 150]. While Bayesian statistics avoids tests of hy-
potheses as such, one may well wish to compare two possible values of θ, say
θ0 and θ1, against each other. Write down the proportionality form of Bayes’
Theorem for each value of θ and divide: the constants of proportionality
cancel, giving

P (θ = θ1|x)
P (θ = θ0|x)

=
P (θ = θ1)

P (θ = θ0)
.
f(x|θ = θ1)

f(x|θ = θ0)
.

The first term on the right is the (prior) odds (ratio) in favour of θ1 (or
against θ0) [we use the term odds here in the same sense as its everyday use
in gambling]. The second term on the right is the likelihood ratio. The left
is the posterior odds. Thus a use of Bayes’ Theorem updates the prior odds
to the posterior odds by the Bayes factor given by the likelihood ratio .

11. Invariance and Jeffreys priors. Suppose we work with a parameter θ,
with information per reading I(θ) = E[(ℓ′(θ)2] =

∫
((log f)θ)

2f(θ). If we
reparametrise to ϕ := g(θ), then as ∂/∂ϕ = (dθ/dϕ)(∂/∂ϕ),

I(ϕ) = (dθ/dϕ)2I(θ).

The idea of choosing a prior which is large where the information is large
is very attractive (and reminiscent of maximum-likelihood estimation!). Jef-
freys suggested choosing a prior of the form

π(θ) ∝
√
I(θ).

The square root is explained by requiring the prior to be invariant under
reparametrisation, as by above,

π(ϕ)dϕ ∝
√
I(ϕ)dϕ =

√
I(θ)dθ ∝ π(θ)dθ : π(ϕ)dϕ = π(θ)dθ

(both sides integrate to 1, so we can take equality here). There is an ex-
tension to higher dimensions, using the Fisher information matrix and the
square root of the modulus of its determinant.

Bayesian procedures are in general not invariant under reparametrisa-
tion! This can be seen as a drawback, but Bayesians argue that one needs
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to incorporate a loss function (or utility function), and one should seek a
parametrisation that suits this loss function.
Note. Sir Harold JEFFREYS (1891-1989) was primarily a geophysicist, and
wrote an influential book The Earth: Its Origin, History and Physical Con-
stitution, 19241. He was also a pioneer of Bayesian statistics, and wrote an
early book on it, Theory of probability (1st ed. 1939, 2nd ed. 1960, 3rd
ed. 1983). He also wrote (with his wife) ‘Jeffreys and Jeffreys’, Methods of
mathematical physics, CUP, 1946.

Postscript: Bayesian solution of the equity premium puzzle.
Following Markowitz (I.5), we should diversify our financial savings into

a range of assets in our portfolio – including cash (invested risklessly – e.g.,
by buying Government bonds, or ‘gilts’, or putting it in the bank or building
society – which we suppose riskless here, discounting such disasters as the
Icelandic banking crisis, Northern Rock, RBS etc.) and risky stock. There
is no point in taking risk unless we are paid for it, so there will be an excess
return – equity premium – µ−r of the risky stock (return µ) over the riskless
cash (return r), to be compared with the volatility σ of the risky stock via
the Sharpe ratio (or market price of risk) λ := (µ − r)/σ). Historical data
show that the observed excess return seems difficult to explain.

A Bayesian solution to this ‘equity premium puzzle’ has been put forward
by Jobert, Platania and Rogers. They conclude that there is no equity pre-
mium puzzle, if one uses a Bayesian analysis to reflect fully one’s uncertainty
in modelling this situation. See
[JPR] A. JOBERT, A. PLATANIA & L. C. G. ROGERS, A Bayesian so-
lution to the equity premium puzzle. Preprint, Cambridge (available from
Chris Rogers’ homepage: Cambridge University, Statistical Laboratory).
The Twenties Example [JPR]. One observes daily prices of a stock for T
years, with an annual return rate of 20% and an annual volatility of 20%.
How large must T be to give confidence intervals of ±1% for (i) the volatility,
(ii) the mean? Answers: (i) about 11; (ii) about 1,550!!

This illustrates what is called mean blur; see e.g.
D. G. LUENBERGER, Investment Science, OUP, 1997.
Rough explanation: for the mean, only the starting and final values matter
(so effective sample size is 2); for the volatility, everything matters.

1Jeffreys was the first to suggest that the earth’s core is liquid – but he was a strong
opponent of continental drift!
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V. REGRESSION

1. LEAST SQUARES
The idea of regression is to take some sample of size n from some unknown

population (typically n is large – the larger the better), and seek how best to
represent it in terms of a smaller number of variables, typically involving p
parameters (p to be kept as small as possible, to give a parsimonious repre-
sentation of the data – so p is much smaller than n, p << n). Usually we will
have p explanatory variables, and represent the data as a linear combination
of them (the coefficients being the parameters) plus some random error, as
best we can. To do this, we use the method of least squares, and choose
the coefficients so as to minimise the sum of squares (SS) of the differences
between the observed data points and the linear combination. This gives us
a fitted value; what is left over is called a residual; thus

data = true value + error = fitted value + residual.

If the data forms an n-vector y and the parameters form a p-vector β, the
model equation is

y = Aβ + ϵ,

where A is an n × p matrix of constants (the design matrix), and ϵ is an n-
vector of errors. In the full-rank case (where A has rank p), it can be shown
([BF], 3.1) that the least-squares estimates (LSEs) of β are

β̂ = (ATA)−1ATy,

and (Gauss-Markov Theorem) that this gives the minimum-variance unbi-
ased (= ‘best’) linear estimator (or BLUE): in this sense least-squares is best.

Geometrically, the Method of Least Squares projects n-dimensional real-
ity onto the best approximating p-dimensional subspace. Indeed, the key role
is played by the projection matrix P = A(ATA)−1AT (or P = AC−1AT with
C := ATA the information matrix; P is n × n, C is p × p). P is also called
the hat matrix, H, as it projects the data y onto the fitted values ŷ = Aβ̂.

To make good statistical sense of this, we need a statistical model for the
error structure. We will use the multivariate normal distribution (Section 3),
whose estimation theory follows in Section 4.

The most basic case is p = 2, where one fits a line (two parameters, slope
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and intercept) through n data points in the plane. One can show (see e.g.
[BF], 1.2) that the least-squares (best) line is

y = a+ bx, b =
xy − x.y

x2 − x2
= sxy/sxx = rxysy/sx, a = y − bx.

(here sxy is the sample covariance between x and y, sxx = s2x is the sample
variance of x, rxy = sxy/(sxsy) the sample correlation coefficient). This is
the sample regression line. By LLN, its large-sample limit is the (population)
regression line,

y = α+ βx, β = ρσ2/σ1, α = Ey− βEx : y−Ey = (ρσ2/σ1)(x−Ex).

The multivariate normal reduces in this case to the bivariate normal in Sec-
tion 2; we treat this in full because of its fundamental importance and of
how well it illustrates the general case.

Motivating examples:
1. CAPM (I.5). The capital asset pricing model looks at individual risky
assets and compares them with ‘the market’, or some proxy for it such as an
index. One seeks to ‘pick winners’ by maximising ‘beta’, or the slope of the
linear trend of asset price versus market price.
2. Examination scores (BF, 1.4). Here x is the ‘incoming score’ of an entrant
to an elite academic programme, y is the ‘graduating score’; the question is
how well does the institution pick its intake (i.e., how well does x predict y).
3. Galton’s height data (BF, 1.3). Here y = offspring’s height (adult sons,
say), x = average of parents’ heights.
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