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4. ESTIMATION THEORY FOR THE MULTIVARIATE NOR-
MAL.

Given a sample x1, . . . , xn from the multivariate normal Np(µ,Σ), form
the sample mean (vector) and the sample covariance matrix as in the one-
dimensional case:

x̄ :=
1

n

n∑
i=1

xi, S :=
1

n

n∑
i=1

(xi − x̄)T (xi − x̄).

The likelihood for a sample of size 1 is

L(x|µ,Σ) = (2π)−p/2|Σ|−1/2 exp{−1

2
(x− µ)TΣ−1(x− µ)},

so the likelihood for a sample of size n is

L = (2π)−np/2|Σ|−n/2 exp{−1

2

n∑
1

(xi − µ)TΣ−1(xi − µ)}.

Writing
xi − µ = (xi − x̄)− (µ− x̄),

n∑
1

(xi − µ)TΣ−1(xi − µ) =
n∑
1

(xi − x̄)TΣ−1(xi − x̄) + n(x̄− µ)TΣ−1(x̄− µ)

(the cross-terms cancel as
∑
(xi − x̄) = 0). The summand in the first term

on the right is a scalar, so is its own trace. Since trace(AB) = trace(BA)
and trace(A+B) = trace(B + A),

trace(
n∑
1

(xi − x̄)TΣ−1(xi − x̄)) = trace(Σ−1
n∑
1

(xi − x̄)T (xi − x̄))

= trace(Σ−1.nS) = n trace(Σ−1S).

Combining,

L = (2π)−np/2|Σ|−n/2 exp{−1

2
n trace(Σ−1S)− 1

n
n(x̄− µ)TΣ−1(x̄− µ)}.

Write
V := Σ−1
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(‘V for variance’); then

ℓ = const− 1

2
n trace(V S)− (x̄− µ)TV (x̄− µ).

So by the Fisher-Neyman Theorem, (X̄, S) is sufficient for (µ,Σ). It is in
fact minimal sufficient (Problems 8).

These natural estimators are in fact the MLEs:

Theorem. For the multivariate normal Np(µ,Σ), x̄ and S are the maximum
likelihood estimators for µ, Σ.

Proof. Write V = (vij) := Σ−1. By above, the likelihood is

L = const.|V |n/2 exp{−1

2
n trace(V S)− 1

2
n(x̄− µ)TV (x̄− µ)},

so the log-likelihood is

ℓ = c+
1

2
n log |V | − 1

2
n trace(V S)− 1

2
n(x̄− µ)TV (x̄− µ).

The MLE µ̂ for µ is x̄, as this reduces the last term (the only one involving
µ) to its minimum value, 0. For a square matrix A = (aij), its determinant
is

|A| =
∑
j

aijAij

for each i, or
|A| =

∑
i

aijAij

for each j, expanding by the ith row or jth column, where Aij is the cofactor
(signed minor) of aij. From either,

∂|A|/∂aij = Aij,

so
∂ log |A|/∂aij = Aij/|A| = (A−1)ji,

the (j, i) element of A−1, recalling the formula for the matrix inverse (or
(A−1)ij if A is symmetric). Also, if B is symmetric,

trace(AB) =
∑
i

∑
j

aijbji =
∑
i,j

aijbij,
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so
∂trace(AB)/∂aij = bij.

Using these, and writing S = (sij),

∂ log |V |/∂vij = (V −1)ij = (Σ)ij = σij (V := Σ−1),

∂trace(V S)/∂vij = sij.

So

∂ℓ/∂vij =
1

2
n(σij − sij),

which is 0 for all i and j iff Σ = S. This says that S is the MLE for Σ, as
required. //

5. CONDITIONING AND REGRESSION
Recall that the conditional density of Y given X = x is

fY |X(y|x) := fX,Y (x, y)/
∫

fX,Y (x, y)dy.

Conditional means.
The conditional mean of Y given X = x is

E(Y |X = x),

a function of x called the regression function (of Y on x). So, if we do not
specify the value x, we get E(Y |X). This is random, because X is random
(until we observe its value, x; then we get the regression function of x as
above). As E(Y |X) is random, we can look at its mean and variance.

Recall (SP, Ch. II)

THEOREM (Conditional Mean Formula). E[E(Y |X)] = EY .

Interpretation. EY takes the random variable Y , and averages out all the
randomness to give a number, EY .
E(Y |X) takes the random variable Y , and averages out all the randomness
in Y NOT accounted for by knowledge of X.
E[E(Y |X)] then averages out the remaining randomness, which IS accounted
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for by knowledge of X, to give EY as above.
Example: Bivariate normal distribution, N(µ1, µ2; σ

2
1, σ

2
2; ρ), or N(µ, σ),

µ = (µ1, µ2)
T , σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
=

(
σ11 σ12

σ12 σ22

)
.

Then

E(Y |X = x) = µ2 + ρ
σ2

σ1

(x− µ1), so E(Y |X) = µ2 + ρ
σ2

σ1

(X − µ1).

So

E[E(Y |X)] = µ2 + ρ
σ2

σ1

(EX − µ1) = µ2 = EY, as EX = µ1.

As with the bivariate normal, we should keep some concrete instance in
mind as a motivating example, e.g.:
X = incoming score of student [in medical school or university, say], Y =
graduating score;
X = child’s height at 2 years (say), Y = child’s eventual adult height,
or X = mid-parent height, Y = child’s adult height, as in Galton’s study.

Recall also (SP, Ch. II)

THEOREM (Conditional Variance Formula).

varY = EXvar(Y |X) + varXE(Y |X).

Interpretation.
varY = total variability in Y,

EXvar(Y |X) = variability in Y not accounted for by knowledge of X,

varXE(Y |X) = variability in Y accounted for by knowledge of X.

Example: the bivariate normal.

Y |X = x is N(µ2 + ρ
σ2

σ1

(x− µ1), σ
2
2(1− ρ2)), varY = σ2

2,

E(Y |X = x) = µ2 + ρ
σ2

σ1

(x− µ1), E(Y |X) = µ2 + ρ
σ2

σ1

(X − µ1),

which has variance (ρσ2/σ1)
2varX = (ρσ2/σ1)

2σ2
1 = ρ2σ2

2;

var(Y |X = x) = σ2
2(1− ρ2), EXvar(Y |X) = σ2

2(1− ρ2).
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COROLLARY. E(Y |X) has the same mean as Y and smaller variance (if
anything) than Y .

Proof. From the Conditional Mean Formula, E[E(Y |X)] = EY . Since
var(Y |X) ≥ 0, EXvar(Y |X) ≥ 0, so

varE[Y |X] ≤ varY

from the Conditional Variance Formula. //

This result has important applications in estimation theory. Suppose we
are to estimate a parameter θ, and are considering a statistic X as a pos-
sible estimator (or basis for an estimator) of θ. We would naturally want
X to contain all the information on θ contained within the entire sample.
What (if anything) does this mean in precise terms? The answer lies in the
concept of sufficiency (‘data reduction’) - one of the most important con-
tributions to statistics of the great English statistician R. A. (Sir Ronald)
Fisher (1880-1962) in 1920. In the language of sufficiency, the Conditional
Variance Formula is seen as (essentially) the Rao-Blackwell Theorem, a key
result in the area (see the index in your favourite Statistics book for more).
Regression.

In the bivariate normal, with X = mid-parent height, Y = child’s height,
E(Y |X = x) is linear in x (regression line). In a more detailed analysis, with
U = father’s height, V = mother’s height, Y = child’s height, one would
expect E(Y |U = u, V = v) to be linear in u and v (regression plane), etc.

In an n-variate normal distributionNn(µ, σ), suppose thatX = (X1, · · · , Xn)
is partitioned into X1 := (X1, · · · , Xr)

T and X2 := (Xr+1, · · · , Xn)
T . Let the

corresponding partition of the mean vector and the covariance matrix be

µ =

(
µ1

µ2

)
, σ =

(
σ11 σ12

σ21 σ22

)
,

where EXi = µi, σ11 is the covariance matrix of X1, σ22 that of X2, σ12 = σT
21

the covariance matrix of X1 with X2.
We restrict attention, for simplicity, to the non-singular case, where σ is

positive definite.

LEMMA. If σ is positive definite, so is σ11.
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Proof. xTσx > 0 as σ is positive definite. Take x = (x1,0)
T , where x1 has

the same number of components as the order of σ11 [i.e., in matrix language,
so that the partition of x is conformable with those of µ and σ above]. Then
x1σ11x1 > 0 for all x1. This says that σ11 is positive definite, as required. //

THEOREM. The conditional distribution of X2 given X1 = x1 is

X2|X1 = x1 ∼ N(µ2 + σ21σ
−1
11 (x1 − µ1), σ22 − σ21σ

−1
11 σ12).

COROLLARY. The regression of X2 on X1 is linear:

E(X2|X1 = x1) = µ2 + σ21σ
−1
11 (x1 − µ1).

Proof. Recall that AX,BX are independent iff AσBT = 0, or as σ is
symmetric, BσAT = 0. Now

X1 = AX where A = (I,0),

X2−σ21σ
−1
11 X1 =

(
−σ21σ

−1
11 I

)( X1

X2

)
= BX, where B =

(
−σ21σ

−1
11 I

)
.

Now

BσAT =
(
−σ21σ

−1
11 I

)( σ11 σ12

σ21 σ22

)(
I
0

)
=
(
−σ21σ

−1
11 I

)( σ11

σ21

)

= −σ21σ
−1
11 σ11 + σ21 = 0,

so X1 and X2 − σ21σ
−1
11 X1 are independent. Since both are linear transfor-

mations of X, which is multinormal, both are multinormal. Also,

E(BX) = BEX =
(
−σ21σ

−1
11 I

)( µ1

µ2

)
= µ2 − σ21σ

−1
11 µ1.

To calculate the covariance matrix, introduce C := −σ21σ
−1
11 , so B = (C I),

and recall σT
12 = σ21, so CT = −σ−1

11 σ12:

var(BX) = BσBT =
(
C I

)( σ11 σ12

σ21 σ22

)(
CT

I

)

=
(
C I

)( σ11C
T + σ12

σ21C
T + σ22

)
= Cσ11C

T +Cσ12 + σ21C
T + σ22
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= σ21σ
−1
11 σ11σ

−1
11 σ12 − σ21σ

−1
11 σ12 − σ21σ

−1
11 σ12 + σ22

= σ22 − σ21σ
−1
11 σ12.

By independence, the conditional distribution of BX given X1 = AX is
the same as its marginal distribution, which by above isN(µ2−σ21σ

−1
11 µ1, σ22−

σ21σ
−1
11 σ12). So givenX1, X2−σ21σ

−1
11 X1 is N(µ2−σ21σ

−1
11 µ1, σ22−σ21σ

−1
11 σ12).

To pass from the conditional distribution of X2 − σ21σ
−1
11 X1 given X1 to

that of X2 given X1: just add σ21σ
−1
11 X1. Then

X2|X1 ∼ N(µ2 + σ21σ
−1
11 (X1 − µ1), σ22 − σ21σ

−1
11 σ12). //

Here σ22 − σ21σ
−1
11 σ12 is called the partial covariance matrix of X2 given X1.
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VI. TIME SERIES (TS).

1. STATIONARY PROCESSES AND AUTOCORRELATION
A TS - a sequence of observations indexed by time - may well exhibit, on

visual inspection after plotting, a trend - a tendency to increase or decrease
with time, or seasonality, or both. However, the simplest case is where trend
and seasonality are absent, and we begin with this. Furthermore, even if
they are present, our first task may well be to remove them, by detrending
and/or seasonal adjustment.
Definition. A TS, or stochastic process, is strictly stationary if its finite-
dimensional distributions are invariant under time-shifts - that is, if for all
n, t1, · · · , tn and h, (Xt1 , · · · , Xtn) and (Xt1+h, · · · , Xtn+h) have the same dis-
tribution. In particular, for a stationary TS:
(i) taking n = 1, the marginal distribution of Xt is the same for all t, so the
mean of Xt (if it is defined, as we shall assume) is constant, = µ say, and so
is its variance (if defined, as we shall also assume), = σ2 say:

EXt = µ, varXt = σ2 for all t.

(ii) Taking n = 2, the distributions of (Xt1 , Xt2) is the same as that of
(Xt1+h, Xt2+h), and so depends only on the time-difference t2 − t1, called the
lag. With lag τ , it thus suffices to consider the distribution of (Xt, Xt+τ ),
which depends only on the lag τ , not the time t. In particular, the covariance
cov(Xt, Xt+τ ) is a function of τ only, γ(τ) say:

cov(Xt, Xt+τ ) = γ(τ) for all t

(note that γ(0) = varXt = σ2, for all t). Similarly for the correlation:

corr(Xt, Xt+τ ) = γ(τ)/γ(0) = ρ(τ),

say (note that ρ(0) = 1).
Definition. The function

ρ(τ) := corr(Xt, Xt+τ )

is called the autocorrelation function of the (strictly) stationary process (Xt).
Note. 1. If Xt is normal (Gaussian), its distribution (that is, the set of its
finite-dimensional distributions) is completely determined by its means and
covariances (equivalently, variances and correlations), µ and γ(τ) or ρ(τ).
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Sometimes, however, we do not want to make the very strong assumption of
normality, but only need to specify the distribution of the process as far as
its means and covariances/correlations. As these involve only the one- and
two-dimensional distributions, they are called the second-order properties of
the TS or stochastic process.
2. Since covariance and correlation are commutative – cov(X, Y ) = cov(Y,X)
and corr(X, Y ) = corr(Y,X) –

γ(−τ) = γ(τ), ρ(−τ) = ρ(τ).

So we can think of the lag just as a time-difference – it does not matter
whether we think forwards in time or backwards in time.

Definition. A process (Xt) whose means and variances exist is called weakly
stationary (covariance stationary, second-order stationary, wide-sense sta-
tionary) if its meanEXt is constant over time and its covariance cov(Xt, Xt+τ )
depends only on the lag τ and not on the time t. We then use the notation
EXt = µ, cov(Xt, Xt+τ ) = γ(τ), corr(Xt, Xt+τ ) = ρ(τ) as above.
Note. 1. A strictly stationary process is always weakly stationary. The
converse is false in general but true for the normal (Gaussian) case.
2. For brevity, we now abbreviate ‘weakly stationary’ to ‘stationary’. We will
continue to say ‘strictly stationary’, unless the process is normal (Gaussian),
when the strictness is automatic (by above), so can be understood.
White Noise. The simplest possible case of stationarity is µ = EXt = 0,
γ(τ) = σ2ρ(τ), where ρ(τ) = corr(Xt, Xt+τ ) is 1 for τ = 0 and 0 otherwise.
Such processes exist in three levels of generality:
(i) no further restriction (distinct Xt uncorrelated, but may be dependent);
(ii) distinct Xt independent;
(iii) (Xt) normal (Gaussian) - so distinct Xt are independent, because uncor-
related.

The term white noise (WN) is used for some/all such cases, or WN(σ2)
if the variance σ2 needs mention.
Note. The term shows clearly its engineering origins. The word ‘noise’ de-
rives from radio engineering (for instance, spontaneous thermal fluctuations,
or ‘shot noise’, in thermionic valves), and telephone engineering. It is also
used in telecommunications, where the ‘noise’ – random error or disturbances
– may be visual rather than aural (recall that optical fibres are used nowa-
days in cables for long-distance communication, with photons playing the
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role of electrons in the traditional telephone cables). The term ‘white’ is by
analogy with white rather than coloured light. In the language of spectral
theory, white noise has a flat spectrum (a ‘uniform mixture’ of frequencies -
just as white light is a mixture of the colours of the rainbow).
3. We shall use definition (ii) of white noise for convenience. Independence
will allow us to use LLN and CLT.
4. White noise is specific to discrete time. A process with correlation

ρ(τ) =
{
1 (τ = 0)
0 (τ ̸= 0)

is realistic in discrete time (such as the white noise above), but would be
pathological (and physically unrealisable) in continuous time, because of the
discontinuity in the correlation function. However, the process corresponding
to the integrated version of white noise in continuous time does exist and is
extremely important: Brownian motion (SP, Ch. III).
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