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2. THE CORRELOGRAM
If (X1, · · · , Xn) is a section of a TS observed over a finite time-interval,

X̄ :=
1

n

∑n

i=1
Xi

is the sample mean. If µ = EXt is the population mean, by LLN

X̄ → µ = EXt (n→ ∞) :

X̄ is a consistent estimator of µ = EXt.
The sample autocorrelation at lag τ is

c(τ), cτ :=
1

n

∑n−τ

1
(Xt − X̄)(Xt+τ − X̄).

Proposition. c(τ) → γ(τ) (n→ ∞).
Proof. Expanding out the brackets in the definition above,

c(τ) =
1

n

∑
(XtXt+τ )− X̄.

1

n

∑
Xt+τ − X̄.

1

n

∑
Xt +

(n− τ)

n
(X̄)2.

By LLN (applied to stationary, rather than independent, sequences – the
Birkhoff-Khintchine Ergodic Theorem, which we quote),

1

n

∑
XtXt+τ → E(XtXt+τ ),

1

n

∑
Xt+τ → EXt+τ = µ,

1

n

∑
Xt → EX0 = µ.

So
c(τ) → E(XtXt+τ )− µ2 − µ2 + µ2 = E(XtXt+τ )− µ2.

But

γ(τ) = E[(Xt+τ − µ)(Xt − µ)] = E(Xt+τXt)− µEXt − µEXt+τ + µ2

= E(Xt+τXt)− µ2 − µ2 + µ2 = E(XtXt+τ )− µ2,

the limit obtained above. So c(τ) → γ(τ). //
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Note. 1. Thus the sample autocovariance c(τ) is a consistent estimator of
the population autocovariance γ(τ).
2. To help remember this: it is traditional in Statistics to use Roman letters
for sample quantities, and Greek letters for the corresponding population
quantities or parameters.
Definition. The sample autocorrelation at lag τ is

rτ , r(τ) := ρ(τ)/c(0).

Corollary. r(τ) → c(τ) (n→ ∞):
the sample autocorrelation r(τ) is a consistent estimator of the population
autocorrelation ρ(τ).
Definition. A plot of r(τ) against τ is called the correlogram.

The correlogram is the principal tool for dealing with Time Series in the
time domain - that is, looking at time-dependence directly. This is in contrast
to the frequency domain (spectral properties and Fourier analysis).
Large-Sample Behaviour.

The simplest case is where (Xt) is itself white noise, WN. Then ρ(0) = 1,
ρ(τ) = 0 for all non-zero lags τ , by definition of WN, and r(0) = c(0)/c(0) = 1
also. For τ non-zero and n large, one expects r(τ) to be small (as r(τ) →
c(τ) = 0) – but how small?

It was shown by M. S. BARTLETT in 1946 (see e.g. Diggle [D] 2.5) that
for large n and τ non-zero,

r(τ) ∼ N(0, 1/n) :

r(τ) is approximately normal with mean 0 and variance 1/n. So as
√
nr(τ) ∼

Φ := N(0, 1), the standard normal distribution, which takes values > 1.96 ∼
2 in modulus with probability 5%, only values of r(τ) with

|r(τ)| ≥ 1.96/
√
n ∼ 2/

√
n

differ significantly from zero.

3. AUTOREGRESSIVE PROCESSES, AR(1)
Recall that in a linear regression model, the dependent variable Y de-

pends in a linear way on an independent variable X (or X1, X2, X3, · · ·, or
X,X2, X3, · · ·), with an error structure or noise process also present.
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In a TS model, the current value Xt depends in a linear way on the pre-
vious value Xt−1 (or on the p previous values Xt−1, Xt−2, · · · , Xt−p), again
plus noise.
First-order case: AR(1). Suppose that our model is

Xt = ϕXt−1 +m+ ϵt, ((ϵt) WN)

for t an integer (positive, negative or zero), where (ϵt) is a white noise process
WN(σ2). Take means and use EXt = µ, Eϵt = 0:

µ = ϕµ+m.

So if ϕ ̸= 1,
µ = m/(1− ϕ),

and if ϕ = 1, then m = 0.
For simplicity, centre at means:

Xt − µ = ϕ(Xt−1 − µ) +m− µ+ ϕµ+ ϵt

= ϕ(Xt−1 − µ) +m− µ(1− ϕ) + ϵt

= ϕ(Xt−1 − µ) + ϵt,

by above. Centring at means (i.e. replacing Xt − µ by Xt) for simplicity, we
have

Xt = ϕXt−1 + ϵt, (∗)

a simpler model, with all means zero. This is called an autoregressive model
of order one, AR(1). For, it has the form of a regression model, with Xt−1 as
the ‘dependent variable’ and Xt as the ‘independent variable’: Xt is regressed
on the previous X-value (earlier in time), so the process (Xt) is regressed on
itself (Greek: autos = self).

Using (∗) recursively,

Xt = ϕ(ϕXt−2 + ϵt−1) + ϵt

= ϕ2Xt−2 + ϕϵt−1 + ϵt

= · · ·
= ϕnXt−n +

∑n−1

i=0
ϕiϵt−1.

If |ϕ| < 1, this suggests that the first term on the RHS → 0 as n → ∞,
giving Xt =

∑∞
0 ϕ

iϵt−i. This is true, provided we interpret the convergence
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of the infinite series on RHS suitably. We have

E[(Xt −
n−1∑
1

ϕiϵt−i)
2] = E[(ϕnXt−n)

2] = ϕ2nE[X2
t−n] = ϕ2nγ0,

where γ0 = varXt for all t. Since |ϕ| < 1, ϕ2n → 0 as n → ∞, so RHS → 0
as n→ ∞. So LHS → 0 as n→ ∞. This says that∑n

0
ϕiϵt−i → Xt (n→ ∞),

or ∑∞
0
ϕiϵt−i = Xt,

in mean square (or, in L2).
Interpreting convergence in this mean-square sense,

Xt =
∑∞

0
ϕiϵt−i (∗∗)

expresses Xt on LHS as a weighted sum of ϵt, ϵt−1, ϵt−2, · · · on RHS. This
weighted sum resembles an average (although the weights sum to 1/(1− ϕ),
not 1 as is usual for an average), and the set (ϵt, ϵt−1, ϵt−2, · · ·) of white-noise
variables being averaged over moves with t; there are infinitely many of them.
Hence (∗∗) is called the infinite moving-average representation of the AR(1)
process (∗). Note that the further we go back in time, the more the ϵt−i are
down-weighted by the geometrically decreasing weights ϕi.
Autocovariance of AR(1). Since ϵt+1 is independent of (or, using the weaker
definition of white noise, uncorrelated with) ϵt, ϵt−1, ϵt−2, · · ·, it is indepen-
dent of (or uncorrelated with) the linear combination Xt =

∑∞
0 ϕ

iϵt−i of
them. So ϵt+1 is uncorrelated with Xt, Xt−1, · · ·. This says that Xs and ϵt
are uncorrelated for s < t. Since all means are zero:

E(Xsϵt) = 0 (s < t).

Square both sides of (∗) and take expectations:

E[X2
t ] = ϕ2E[X2

t−1] + 2ϕE[Xt−1ϵt−1] + E[ϵ2t ].

The second term on RHS is zero by above; E[X2
t ] = varXt = γ0 for all t,

and E[ϵ2t ] = varϵt = σ2 for all t. So

γ0 = ϕ2γ0 + σ2 :
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γ0 = σ2/(1− ϕ2),

identifying γ0 in terms of the WN variance σ2 and the weight ϕ.
Multiply (∗) by Xt−τ (τ ≥ 1) and take expectations:

γτ = ϕγτ−1

(since ϵt on RHS is uncorrelated with Xt−τ ). Using this repeatedly,

γτ = ϕγτ−1 = ϕ2γτ−2 = · · · = ϕτγ0 = ϕτσ2/(1− ϕ2) :

γτ = σ2.ϕτ/(1− ϕ2) (τ ≥ 0),

giving the autocovariance of an AR(1) process as geometrically decreasing.
Passing to the autocorrelation ρτ = γτ/γ0: ρτ = ϕτ for τ ≥ 0). Note
that ρτ = ρ−τ (since two random variables have the same covariance and
correlation either way round), so we can re-write this as

ρτ = ϕ|τ |.

Recall |ϕ| < 1 here. Two cases are worth distinguishing.
Case 1: 0 ≤ ϕ < 1. Here the graph of ρτ is a geometric series with non-
negative common ratio. Since the sample autocorrelation rτ is an approx-
imation to ρτ , the correlogram (graph of rτ ) is an approximation to this.
Successive values of Xt are positively correlated: positive values of Xt tend
to be succeeded by positive values, and similarly negative by negative.
Case 2: −1 < ϕ < 0. Here the graph is again a geometric series, but one
that oscillates in sign, as well as damping down geometrically. Successive
values of Xt are negatively correlated: positive values tend to be succeeded
by negative values, and vice versa.

To summarise: the signature of an AR(1) process is a correlogram that
looks like an approximation to a geometric series, as in Case 1 or 2 above,
depending on the sign of ϕ.
The Lag Operator.

Before proceeding, we introduce some useful notation and terminology.
The lag operator, or backward shift operator, operates on sequences by shift-
ing the index back in time by one. We write it as B:

BXt = Xt−1,
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(though L - L for lag - is also used). Repeating this, B2 shifts back in time
by two, B2Xt = Xt−2, and generally

BnXt = Xt−n (n = 0, 1, 2, · · ·)

(B0 = I is the identity operator: B0Xt = IXt = Xt).
We can re-write (∗) in this notation as

Xt = ϕBXt + ϵt : (1− ϕB)Xt = ϵt.

Formally, this suggests

Xt = (1− ϕB)−1ϵt = (1 + ϕB + ϕ2B2 + · · ·+ ϕiBi + · · ·)ϵt
= 1 + ϕϵt−1 + ϕ2ϵt−2 + · · ·+ ϕiϵt−i + · · ·
=

∑∞
0
ϕiϵt−i,

which is (∗∗) as above, provided that the operator equation

(1− ϕB)−1 =
∑∞

i=0
ϕiBi

makes sense. It does make sense, with convergence on the RHS interpreted
in the mean-square sense as above, if |ϕ| < 1.

4. GENERAL AUTOREGRESSIVE PROCESSES, AR(p).
Again working with the zero-mean case for simplicity, the extension of

the above to p parameters is the model

Xt = ϕ1Xt−1 + ϕ2Xt−2 + · · ·+ ϕpXt−p + ϵt, (∗)

with (ϵt) WN as before. Since Xt−i = BiXt, we may re-write this as

Xt − ϕ1BXt − · · · − ϕpB
pXt = ϵt.

Write
ϕ(λ) := 1− ϕ1λ− · · · − ϕpλ

p

for the pth order polynomial here. Then formally,

ϕ(B)Xt = ϵt. : Xt = ϕ(B)−1ϵt,

so if we expand 1/ϕ(λ) in a power series as

1/ϕ(λ) ≡ 1 + β1λ+ · · ·+ βnλ
n + · · · ,
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Xt =
∑∞

i=0
βiB

iϵt =
∑∞

0
βiϵt−i.

This is the analogue of Xt =
∑∞

0 ϕ
iϵt−i for AR(1), and shows that Xt can

again be represented as an infinite moving-average process - or linear process
(Xt is an (infinite) linear combination of the ϵt−i).

Multiply (∗) through byXt−k and take expectations. SinceE[Xt−kXt−i] =
ρ(|k − i|) = ρ(k − i), this gives

ρ(k) = ϕ1ρ(k − 1) + · · ·+ ϕpρ(k − p) (k > 0). (YW )

These are the Yule-Walker equations, due to G. Udny Yule (1871-1951) in
1926 and Sir Gilbert Walker (1868-1958) in 1931.

The Yule-Walker equations (YW) have the form of a difference equation
of order p. The characteristic polynomial of this difference equation is

λp − ϕ1λ
p−1 − · · · − ϕp = 0,

which by above is
ϕ(1/λ) = 0.

If λ1, · · · , λp are the roots of this characteristic polynomial, the trial solution
ρ(k) = λk is a solution if and only if λ is one of the roots λi. Since the
equation is linear,

ρ(k) = c1λ
k
1 + · · ·+ cpλ

k
p

(for k ≥ 0, and use ρ(−k) = ρ(k) for k < 0) is a solution for all choices of
constants c1, · · · , cp. This is the general solution of (YW) if all the roots λi
are distinct, with appropriate modifications for repeated roots (if λ1 = λ2,
use c1λ

k
1 + c2kλ

k
1, etc.).

Now |ρ(k)| ≤ 1 for all k (as ρ(.) is a correlation coefficient), and this is
only possible if

|λi| ≤ 1 (i = 1, · · · , p)
– that is, all the roots lie inside (or on) the unit circle. This happens (as our
polynomial is ϕ(1/λ)) if and only if all the roots of the polynomial ϕ(λ) lie
outside (or on) the unit circle. Then |ρ(k)| ≤ 1 for all k, and when there are
no roots of unit modulus, also ρ(k) → 0 as k → ∞ - that is, the influence of
the remote past tends to zero, as it should. We shall see below that this is
also the condition for the AR(p) process above to be stationary.
Example of an AR(2) process.

Xt =
1

3
Xt−1 +

2

9
Xt−2 + ϵt, (ϵt) WN. (1)
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Moving-average representation. Let the infinite moving-average representa-
tion of (Xt) be

Xt =
∑∞

i=0
ψiϵt−i. (2)

Substitute (2) into (1):

∑∞
0
ψiϵt−i =

1

3

∑∞
0
ψiϵt−i−1 +

2

9

∑∞
0
ψiϵt−2−i + ϵt

=
1

3

∑∞
1
ψi−1ϵt−i +

2

9

∑∞
2
ψi−2ϵt−i + ϵt.

Equate coefficients of ϵt−i:
i = 0 gives ψ0 = 1; i = 1 gives ψ1 =

1
3
ψ0 = 1/3; i ≥ 2 gives

ψi =
1

3
ψi−1 +

2

9
ψi−2.

This is again a difference equation, which we solve as above. The character-
istic polynomial is

λ2 − 1

3
λ− 2

9
= 0, or (λ− 2

3
)(λ+

1

3
) = 0,

with roots λ1 = 2/3 and λ2 = −l/3. The general solution of the difference
equation is thus ψi = c1λ

i
1 + c2λ

i
2 = c1(2/3)

i + c2(−1/3)i. We can find c1, c2
from the values of ψ0, ψ1, found above:
i = 0 gives c1 + c2 = 0, or c2 = 1− c1.
i = 1 gives c1.(2/3)+(1−c1)(−1/3) = ψ1 = 1/3: 2c1−(1−c1) = 1: c1 = 2/3,
c2 = 1/3. So

ψi =
2

3
(
2

3
)i +

1

3
(
−1

3
)i = (

2

3
)i+1 − (

−1

3
)i+1,

and

Xt =
∑∞

0
[(
2

3
)i+1 − (

−1

3
)i+1]ϵt−i,

giving the moving-average representation, as required.
Autocovariance. Recall the Yule-Walker equations

ρ(k) = ϕ1ρ(k − 1) + ϕ2ρ(k − 2)

for AR(2). As before,
ρ(k) = aλk1 + bλk2
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for some constants a, b. Taking k = 0 and using ρ(0) = 1 gives a + b = 1:
b = 1− a. So here,

ρ(k) = a(2/3)k + (1− a)(−1/3)k.

Taking k = 1 in the Yule-Walker equations gives

ρ(1) = ϕ1ρ(0) + ϕ2ρ(−1),

which as ρ(0) = 1 and ρ(−1) = ρ(1) gives

ρ(1) = ϕ1/(1− ϕ2).

As here ϕ1 = 1/3 and ϕ2 = 2/9, this gives ρ(1) = 3/7. We can now use this
and the above expression for ρ(k) to find a: taking k = 1 and equating,

ρ(1) = 3/7 = a.(2/3) + (1− a).(−1/3).

That is,

(
3

7
+

1

3
) = a.(

2

3
+

1

3
) = a :

a = (9 + 7)/21 = 16/21. Thus

ρ(k) =
16

21
(
2

3
)k +

5

21
(
−1

3
)k.

Note. For large k, the first term dominates, and

ρk ∼ 16

21
.(
2

3
)k (k → ∞).

Variance. For the variance: square both sides of (2) and take expecta-
tions:

γ0 = varXt = E[
∑∞

i=0
ψiϵt−i.

∑∞
j=0
ψjϵt−j] =

∑∑∞
i,j=0

ψiψjE[ϵt−iϵt−j].

But E[ϵt−iϵt−j] = 0 unless i = j, when it is σ2 = varϵt−i. So

γ0 =
∑∞

i=0
ψ2
i = σ2.

∑∞
0
[(
2

3
)i+1 − (

−1

3
)i+1]2.

The constant on the RHS is a sum of geometric series, on squaring out [...]2:∑∞
0
(4/9)i+1 − 2

∑∞
0
(−2/9)i+1 +

∑∞
0
(1/9)i+1,
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which sums to

(4/9

1− (4/9)
− 2.

(−2/9)

1 + (2/9)
+

1/9

1− (1/9)
=

4

5
+

4

11
+

1

8
=

352 + 160 + 55

440
=

567

440
.

So
varXt = γ0 = σ2.567/440

. Similarly,

γt = cov(Xt, Xt−τ ) = E[
∑∞

i=0
ψiϵt−i.

∑∞
j=0
ψjϵt−j

=
∑∑∞

i,j=0
ψiψjE[ϵt−iϵt−τ−j].

On the RHS, E[.] = σ2 if i = τ + j, zero otherwise. So for τ ≥ 0,

γτ = σ2.
∑∞

j=0
ψτ+jψj = σ2

∑∞
j=0

[(
2

3
)j+1−(−−1

3
)j+1].[(

2

3
)τ+j+1−(−−1

3
)τ+j+1].

Again, the constant on RHS is a sum of geometric series,

(2/3)τ .
4/9

1− (4/9)
− (−1/3)τ .

(−2/9)

1 + (2/9)
− (2/3)τ .

(−2/9)

1 + (2/9)
+(1/3)τ .

1/9

1− (1/9)
,

giving

4

5
.(
2

3
)τ +

2

11
.(−1

3
)τ +

2

11
.(
2

3
)τ +

1

8
.(−1

3
)τ = (

2

3
)τ .[

4

5
+

2

11
] + (−1

3
)τ .[

2

11
+

1

8
] :

γτ = σ2.(
54

55
.(
2

3
)τ +

27

88
.(−1

3
)τ =

σ2

440
.(8.54.(2/3)τ + 5.27.(−1/3)τ ).

So as γ0 = σ2.567/440 and 567 = 81.7,

ρτ = γτ/γ0 =
8.54

81.7
.(
2

3
)τ +

5.27

81.7
.(−1

3
)τ ,

and as 27/81 = 1/3, 54/81 = 2/3, we finally get the autocorrelation function
of this AR(2) model as

ρτ =
16

21
.(
2

3
)τ +

5

21
.(−1

3
)τ .
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Check. (a) ρ0 = 16/21 + 5/21 = 1,
(b) We already know ρτ = a.(2/3)τ + b.(−1/3)τ for some a, b.
Note. For large τ , the first term dominates, and

ρτ ∼ 16

21
.(
2

3
)τ (τ → ∞) :

ρτ is approximately geometrically decreasing for large τ .
AR(p) processes (continued). We return to the general case. Just as in the
AR(2) example above, if the AR(p) process has a moving-average represen-
tation

Xt =
∑∞

i=0
ψiϵt−i,

then if σ2 = varϵt,
varXt = σ2.

∑∞
i=0
ψ2
i .

The condition ∑∞
i=0
ψ2
i <∞

(in words: (ψi) is square-summable, or is in L2) is necessary and sufficient
for
(i) varXt <∞;
(ii) the series

∑
ψiϵt−i in the moving-average representation to be convergent

in mean square – or, in L2.
So for convergence in L2,

∑
ψ2
i <∞ is the necessary and sufficient condition

(NASC) for the moving-average representation of Xt to exist. Since
∑
ψiϵt−i

is (when convergent) stationary (because (ϵt) is stationary: if
∑
ψ2
i < ∞,

then Xt is stationary. The converse is also true; see Section 5 below.
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