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Q1. (i) Spectral decomposition states that for a real symmetric matrix A, A
may be diagonalised by an orthogonal transformation:

A = ΓΛΓT ,

where Λ = diag(λi) is a diagonal matrix of eigenvalues λi, Γ = (γ1, . . . , γn) is
an orthogonal matrix whose columns γi are standardised eigenvectors. [4]

(ii) The matrix square root A
1
2 is defined as

A
1
2 := ΓΛ

1
2ΓT ; [2]

the inverse square root is defined by

A
1
2 := ΓΛ

1
2ΓT . [2]

(iii) If x1, . . . , xn are independent N(0, σ2), the joint density is

n∏
i=1

1

σ
√
2π

exp{−1

2
x2i /σ

2} =
1

σn(2π)
1
2
n
exp{−1

2

n∑
i=1

x2i /σ
2} =

1

σn(2π)
1
2
n
exp{−1

2
∥x∥2/σ2}.

If y = Ox with O orthogonal, the Jacobian of the transformation is |O| = 1,
and ∥y∥ = ∥x∥, so the joint density of the yi is

1

σn(2π)
1
2
n
exp{−1

2
∥y∥2/σ2}.

So y1, . . . , yn are independent N(0, σ2). [5]
(iv) The quadratic form Q := xTAx is thus xTΓΛΓTx by spectral decompo-
sition. Writing y := ΓTx, ΓT is orthogonal as Γ is, so by above Q = yTΛy is
now a quadratic form in the independent N(0, σ2) random variables yi with
diagonal matrix Λ. [4]
(v) A2 = AA = ΓΛΓTΓΛΓT , = ΓΛΛΓT = ΓΛ2ΓT , as Γ is orthogonal. So A
is idempotent (A2 = A) iff Λ2 = Λ, i.e. iff each λ2i = λi, i.e. iff each λi = 0
or 1. [4]
(vi) If P is a symmetric projection, P is symmetric and idempotent, so by
above all its eigenvalues are 0 or 1. The trace is the sum of the eigenvalues;
the rank is the number of non-zero eigenvalues. These are the same when,
as here, all the eigenvalues are 0 or 1. [4]
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Q2. (i) x is multivariate normal if all linear combinations of its components
are univariate normal. Then if x has mean vector µ and covariance matrix
Σ, x ∼ N(µ,Σ). [2]
(ii) If x is multivariate normal, and y is an affine transformation of x, all
linear combinations of components of y are (to within constants) linear com-
binations of (linear combinations of) components of x. So y is multivariate
normal. [2]
Ey = E[Ax+ b] = aE[x] + b = Aµ+ b. [2]
cov(yi, yj) = E[

∑
r air(xr − µr)

∑
s ajs(xs − µs)] =

∑
rs airσrsajs = (AΣAT )ij:

y has covariance matrix AΣAT . [3]
(iii) A subvector can always be obtained from x by applying a suitable mat-
grix A of 0s and 1s. So by (i), any subvector of a multinormal vector is
multinormal. [2]
(iv)x1|x2 ∼ N(µ1 + Σ12Σ

−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21). [2]

(v)

Σ =

 1 ρ ρ2

ρ 1 0
ρ2 0 1

 , Σ11 =

(
1 ρ
ρ 1

)
, Σ21 = (ρ2, 0) = ΣT

12, Σ22 = 1.

So the conditional mean is(
µ1

µ2

)
+

(
ρ2

0

)
.1.(x3 − µ3) =

(
µ1 + ρ2(x3 − µ3)

µ2

)
. [4]

The conditional variance is(
1 ρ
ρ 1

)
−
(
ρ2

0

)
.1.(ρ2 0) =

(
1− ρ4 ρ
ρ 1

)
. [6]

Combining,(
x1
x2

)
|x3 ∼ N(µ,Σ), with µ =

(
µ1 + ρ2(x3 − µ3)

µ2

)
, Σ =

(
1− ρ4 ρ
ρ 1

)
.

[2]
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Q3. (i) With time t discrete: if X = (Xt) has M := suptE[|Xt|] < ∞ and
ψ = (ψj) ∈ ℓ1, i.e. ∥ψ∥1 :=

∑∞
−∞ |ψj| <∞ – then

E[
∑
j

|ψj||Xt−j|] =
∑
j

|ψj|E[|Xt−j|] ≤M∥ψ∥1 <∞

(interchanging E and
∑

by Fubini’s theorem), so
∑

j |ψj||Xt−j| < ∞ a.s.:∑
ψjXt−j is a.s. absolutely convergent, to S say. [4]

Then
|
∑
|j|>n

ψjXt−j| ≤M |
∑
|j|>n

ψj| → 0 (n→ ∞)

(tail of a convergent series), so
∑
ψiXt−j converges to S in ℓ1 also. [4]

(ii) If ψ ∈ ℓ1,
∑ |ψj| < ∞. So ψj → 0, so is bounded: |ψj| ≤ K say. Then∑

j |ψj|2 ≤ C
∑

j |ψj| = K∥ψ∥1 <∞, i.e. ψ ∈ ℓ2. So ℓ1 ⊂ ℓ2. [4]
(iii) If C := suptE[|Xt|2] <∞: take n > m > 0; then

E[|
∑

m<|j|≤n

ψiXt−j|2] =
∑

m<j≤n

∑
m<k≤n

ψjψkE[Xt−jXt−k].

Now |E[Xt−jXt−k]| ≤
√
E[|Xt−j|2].E[|Xt−k|2] ≤ C, by the Cauchy-Schwarz

inequality. So the RHS

≤ C
∑

m<j≤n

∑
m<k≤n

ψjψk = C|
∑

m<j≤n

ψj|2 → 0 (m,n→ ∞),

as ψ ∈ ℓ1. So by completeness of ℓ2,
∑
ψjXt−j converges in ℓ2 (that is, in

mean square) – to S ′, say. [8]
Then by Fatou’s Lemma

E[|S ′−
∑
j

ψjXt−j|2] = E[lim inf
n

|S ′−
n∑
−n

ψjXt−j|2] ≤ lim inf
n

E[|S ′−
n∑
−n

ψjXt−j|2] = 0,

as
∑
ψjXt−j converges to S in ℓ2. So S ′ =

∑
j ψjXt−j = S a.s.: the a.s., ℓ1

and ℓ2 limits coincide. // [5]
Note. The a.s. convergence also follows from Kolmogorov’s theorem on
random series: ψjXt−j has variance

var(ψjXt−j) = ψ2
j var(Xt−j) ≤ ψ2

j sup
t
E[X2

t ] = Cψ2
j ,

so
∑

j var(ψjXt−j) converges as ψ ∈ ℓ2. The same bound also gives ℓ2-
convergence, by dominated convergence.
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Q4. In principal components analysis (PCA), we seek a dimension reduction,
say from p to k. The covariance (or correlation) matrix Σ can be written by
Spectral Decomposition as

Σ = ΓΛΓT ,

where Λ = diag(λi) with λ1 ≥ . . . ≥ λp ≥ 0 are the eigenvalues of Σ and
Γ is an orthogonal matrix of corresponding normalised eigenvectors. Then
y1 := γT1 (x−µ) is the standardised linear combination (SLC – sums of squares
of coefficients = 1) of x with largest variance (λ1), ...,

yk := γTk (x− µ)

the SLC of largest variance (λk) uncorrelated with y1, . . . , kk−1. Then the
proportion of the total variability explained by the first k principal compo-
nents is

(λ1 + . . .+ λk)/(λ1 + . . .+ λp).

We continue to retain PCs until we are satisfied that this fraction is accept-
ably high. We then use these k PCs as a parsimonious summarisation in k
dimensions of the data in p dimensions. [12]

We need to choose, before doing PCA, whether to work with covariances
or with correlations. One prefers covariances when the units in which the
data are measured are meaningful, correlations otherwise. [3]
Examples with correlations. Typically, data are given in terms of prices, and
these are meaningful – they are expressed directly in terms of money. But
what matters to an investor now is whether the stock will appreciate or de-
preciate. The actual amounts he cares about are the amounts he will invest
in the various candidate stocks, and the number of stocks he holds in the
company is simply the ratio of his stake to the stock price. Similarly, with
foreign exchange, the units of currency in different countries may be of dif-
ferent orders of magnitude. Similarly for an investor dividing his holdings
between different economic sectors: what counts here is proportions. [5]
Examples with covariances. Examples where the units are meaningful in-
clude the internal accounts of a company, where different departments, or
activities, contribute to the overall company accounts and balance sheet: all
entries are in terms of money, and relate directly to profit and loss.

Empirical evidence suggests that in managing a portfolio of a range of
stocks (that should be balanced – include lots of negative correlation – by
Markowitzian diversification), covariances are better than correlations. [5]
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Q5. (i)  1 ρ ρ
ρ 1 ρ
ρ ρ 1


 1

1
1

 = (1 + 2ρ)

 1
1
1

 ;

 1 ρ ρ
ρ 1 ρ
ρ ρ 1


 −1

0
1

 = (1−ρ)

 −1
0
1

 ;

 1 ρ ρ
ρ 1 ρ
ρ ρ 1


 −1

1
0

 = (1−ρ)

 −1
1
0

 .
So the eigenvalues are 1+2ρ (single) and 1−ρ (double), with the eigenvectors
as above, as required. [4]
(ii) The matrix, being a covariance matrix, must be non-negative definite,
and so have non-negative eigenvalues. Now the correlation ρ lies in [−1, 1], by
the Cauchy-Schwarz inequality (and in (−1, 1) in the non-degenerate case).
This imposes no restriction on the eigenvalue 1 − ρ, but forces 1 + 2ρ ≥ 0,
i.e. ρ ≥ −1/2, on the eigenvalue 1 + 2ρ. [5]

The corresponding restriction in the positive-definite case ρ > −1/2. [2]
(In the n×n case, the restriction is ρ > −1/(n−1). The relevant theory from
Linear Algebra is that of circulant matrices and determinants. Correlation
matrices of this form arise in Statistics in the intraclass correlation model.)
(iii) If xi ∼ N(µ,Σ) are independent, y1 := x1 + x2, y2 := x2 + x3, y = Ax,
where

y =

(
y1
y2

)
, x =

 x1
x2
x3

 , A =

(
1 1 0
0 1 1

)
.

So the mean vector is

Ey = A.Ex = Aµ =

(
µ1 + µ2

µ2 + µ3

)
= m,

say. [4]
The covariance matrix is

var(y) = AΣAT =

(
1 1 0
0 1 1

) 1 ρ ρ
ρ 1 ρ
ρ ρ 1


 1 0

1 1
0 1



=

(
1 1 0
0 1 1

) 1 + ρ 2ρ
1 + ρ 1 + ρ
2ρ 1 + ρ

 =

(
2 + 2ρ 1 + 3ρ
1 + 3ρ 2 + 2ρ

)
. [10]
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