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SMF SOLUTIONS 11. 15.6.2012

Q1 (Product theorem for determinants). We follow G. BIRKHOFF &
S. MAC LANE, A survey of modern algebra, rev. ed., Macmillan, 1953, X.2.

A can be diagonalised by pre- and post-multiplication by elementary ma-
trices:

A = Er . . . E1DE1 . . . Es,

and for each such E, |EA| = |E|.|A|, |AE| = |A|.|E|. Then A is non-
singular iff all entries of D are non-zero, when D, being diagonal, is itself
an elementary matrix, A = E1 . . . Ek say. If B is also non-singular, then
B = E ′

1 . . . E
′
l say, and then by above

|AB| = |E1 . . . EkE
′
1 . . . E

′
l| = |E1| . . . |Ek|.|E ′

1| . . . |E ′
l| = |A|.|B|.

If B is singular, then Bx = 0 for some non-zero vector x, and then ABx =
A.0 = 0, so AB is singular; similarly (by taking transposes, which does not
affect the determinant but switches factors), if A is singular, AB is singular.
When either factor is singular, the result holds with both sides 0.

Q2. Recall that, with Aij the cofactor (= signed minor) of aij,

|A| =
∑
j

aijAij =
∑
i

aijAij

for each i (expanding by the ith row) and each j (expanding by the jth
column). So expanding by the ith column, |A| = ∑

k akiAki. For Ai, the ith
column is b, with kth component bk, so |Ai| =

∑
k bkAki. But the solution of

Ax = b is x = A−1b, and the inverse matrix has i, j element A−1
ij = Aji/|A|

(inverse matrix = transposed matrix of cofactors over determinant). So

xi = (A−1b)i =
∑
k

A−1
ik bk =

∑
k

Akibk/|A| =
∑
k

bkAki/|A| = |Ai|/|A|.

Q3. xTAx =
∑

ij aijxixj, so by linearity of E, E[xTAx] =
∑

ij aijE[xixj].
Now cov(xi, xj) = E(xixj)− (Exi)(Exj), so

E[xTAx] =
∑
ij

aij[cov(xixj) + Exi.Exj]

=
∑
ij

aijcov(xixj) +
∑
ij

aij.Exi.Exj.

1



The second term on the right is ExTAx. For the first, note that

trace(AB) =
∑
i

(AB)ii =
∑
ij

aijbji =
∑
ij

aijbij,

if B is symmetric. But covariance matrices are symmetric, so the first term
on the right is trace(Avar(x)), as required.

Q4. (i) P 2 = A(ATA)−1AT .A(ATA)−1AT = A(ATA)−1AT = P ; (I − P )2 =
I − 2P + P 2 = I − 2P + P = I − P .
(ii) Recall that tr(A+B) = tr(A) + tr(B), and that tr(AB) = tr(BA). So

trace(I − AC−1AT ) = trace(I)− trace(AC−1AT ).

But trace(I) = n (as here I is the n×n identity matrix), and as trace(AB) =
trace(BA), trace(AC−1AT ) = trace(C−1ATA) = trace(I) = p, as here I is
the p× p identity matrix. So trace(I − AC−1AT ) = n− p.
(iii) If λ is an eigenvalue of B, with eigenvector x, Bx = λx with x ̸= 0.
Then

B2x = B(Bx) = B(λx) = λ(Bx) = λ(λx) = λ2x,

so λ2 is an eigenvalue of B2 (always true – i.e., does not need idempotence).
So

λx = Bx = B2x = . . . = λ2x,

and as x ̸= 0, λ = λ2, λ(λ− 1) = 0: λ = 0 or 1.
The trace is the sum of the eigenvalues, which is r if there are r eigenval-

ues, i.e. when the rank is r. So trace = rank.
(iv) Because P is a projection of rank r, it has r eigenvalues 1 and the rest 0.
We can diagonalise it by an orthogonal transformation to a diagonal matrix
with r 1s on the diagonal, followed by 0s. So the quadratic form xTPx can
be reduced to a sum of r squares of standard normal variates, y1, . . . , yr.
These are independent N(0, σ2) (if y = Ox with O orthogonal and the xi

iid N(0, 1), then the yi are also iid N(0, 1): for, the joint density of the xi

involves only ∥x∥, which is preserved under an orthogonal transformation).
So xTPx = y21 + . . . y2r is σ2 times a χ2(r)-distributed random variable.
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