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SMF SOLUTIONS 4. 23.5.2012

Q1. Asin Problems 3 Q3, the likelihood for the Cauchy location family does
not have any non-trivial factorisation. So by the Fisher-Neyman Theorem,
there are no non-trivial sufficient statistics.

Q2. Under Hy,
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say. Substitute above: at the maximuim,
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as 62 cancels in the exponent.

Under Hy, we obtain as above
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sup L(p,07) = exp{—(m +n)},



as 0% cancels in the exponent. The likelihood ratio is thus
A= (supL)/(sup L) = (61/60)™"™.
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The first term in the denominator is
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(the cross-terms sum to 0, the third term simplifies), and similarly for the
second term. This gives
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(see Problems 4). The LR test is: reject if A too small, which by above is ¢
too big, |t| too big — the t-test, as required.

Q3. The likelihood is

L= ﬁ[[(l’z € (0,0))/0] = 07" I(max < 0), max := max(ry,...,Tn,).
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So the posterior density is proportional to (prior times likelihood)
e /o (0 > max).
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