smfsoln8.tex

SMF SOLUTIONS 8. 6.6.2012

Q1. (i) For n = 1, the mean is 1, because a $\chi^2(1)$ is the square of a standard normal, and a standard normal has mean 0 and variance 1. The variance is 2, because the fourth moment of a standard normal X is 3, and

$$var(X^2) = E[(X^2)^2] - [E(X^2)]^2 = 3 - 1 = 2.$$

For general n, the mean is n because means add, and the variance is 2n because variances add over independent summands.

(ii) For X standard normal, the MGF of its square X^2 is

$$M(t) := \int e^{tx^2} \phi(x) dx = \frac{1}{\sqrt{2\pi}} \int_0^\infty e^{tx^2} \cdot e^{-\frac{1}{2}x^2} dx.$$

We see that the integral converges only for $t < \frac{1}{2}$, when it is $1/\sqrt{(1-2t)}$:

$$M(t) = 1/\sqrt{1-2t}$$
 $(t < \frac{1}{2})$ for X N(0,1).

Now when X, Y are independent, the MGF of their sum is the product of their MGFs. For, e^{tX} , e^{tY} are independent, and the mean of an independent product is the product of the means. Combining these, the MGF of a $\chi^2(n)$ is given by

$$M(t) = 1/(1-2t)^{\frac{1}{2}n}$$
 $(t < \frac{1}{2})$ for $X \chi^2(n)$.

(iii) First, f(.) is a density, as it is non-negative, and integrates to 1:

$$\int f(x)dx = \frac{1}{2^{\frac{1}{2}n}\Gamma(\frac{1}{2}n)} \cdot \int_0^\infty e^{tx} \cdot x^{\frac{1}{2}n-1} \exp(-\frac{1}{2}x)dx$$
$$= \frac{1}{\Gamma(\frac{1}{2}n)} \cdot \int_0^\infty u^{\frac{1}{2}n-1} \exp(-u)du \qquad (u := \frac{1}{2}x)$$
$$= 1,$$

by definition of the Gamma function. Its MGF is

$$M(t) = \frac{1}{2^{\frac{1}{2}n} \Gamma(\frac{1}{2}n)} \cdot \int_0^\infty e^{tx} \cdot x^{\frac{1}{2}n-1} \exp(-\frac{1}{2}x) dx$$

$$=\frac{1}{2^{\frac{1}{2}n}\Gamma(\frac{1}{2}n)}.\int_{0}^{\infty}x^{\frac{1}{2}n-1}\exp(-\frac{1}{2}x(1-2t))dx$$

Substitute u := x(1 - 2t) in the integral. One obtains

$$M(t) = (1 - 2t)^{-\frac{1}{2}n} \cdot \frac{1}{2^{\frac{1}{2}n} \Gamma(\frac{1}{2}n)} \cdot \int_0^\infty u^{\frac{1}{2}n-1} e^{-u} du = (1 - 2t)^{-\frac{1}{2}n},$$

by definition of the Gamma function. //

Q2. (i) $A^{T}A$ is symmetric, so $P = A(A^{T}A)^{-1}A^{T}$ is symmetric. $P^{2} = A(A^{T}A)^{-1}A^{T}A(A^{T}A)^{-1}A^{T} = A(A^{T}A)^{-1}A^{T} = P$. (ii) $(I - P)^{2} = I - 2P + P^{2} = I - 2P + P = I - P$, so I - P is a (symmetric) projection.

(a) tr(A + B) = tr(A) + tr(B) follows as the trace is additive from its definition.

 $tr(AB) = \sum_{i} (AB)_{ii} = \sum_{i} \sum_{j} a_{ij} b_{ji}$, and this is tr(BA) on interchanging the dummy duffices i and j.

(b) $tr(P) = tr(A(A^TA)^{-1}A^T) = tr(A^TA(A^TA)^{-1}) = tr(I_p) = p$, as A is $n \times p$, so A^TA is $p \times p$. $tr(I - P) = tr(I_n) - tr(P) = n - p$, as $P = A(A^TA)^{-1}A^T$ is $n \times n$.

NHB