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3. Non-parametric likelihood
At first glance, ‘non-parametric likelihood’ seems a contradiction in terms

(an oxymoron – ‘square circle’, etc.) But it turns out that maximum-
likelihood estimation (MLE) can indeed be usefully combined with non-
parametrics. First, we interpret the empirical Fn as a non-parametric MLE
(NPMLE) for the unknown true distribution F . For, if the data is {x1, . . . , xn},
the likelihood of F is L(F ) :=

∏n
1∆F (xi) (where ∆F (x) := F (x)− F (x−) is

the probability mass on x), F ({x})). It makes sense to restrict attention to
distributions F with support in {x1, . . . , xn}, that is, absolutely continuous
wrt the empirical Fn: F << Fn, and Fn does indeed maximise the likelihood
over these F (Kiefer & Wolfowitz, 1956). Then it makes sense to call T (Fn)
a NPMLE for T (F ), where T is some functional – the mean, for example.

Let X,X1, . . . , Xn . . . be iid random p-vectors, with mean EX = µ and
covariance matrix Σ of rank q. In higher dimensions, the distribution func-
tion, P (. ≤ .), which leads to confidence intervals, is replaced by P (. ∈ .),
which leads to confidence regions (which covers the unknown parameter with
some probability); convexity is a desirable property of such confidence re-
gions. For r ∈ (0, 1), let

Cr,n := {
∫
XdF : F << Fn, L(F )/L(Fn) ≥ r}.

Then Cr,n is a convex set, and

P (µ ∈ Cr,n) → P (χ2(q) ≤ −2 log r) (n → ∞)

(the rate is O(1/
√
n) if E[∥X∥4] < ∞). This is a non-parametric analogue

of Wilks’ Theorem (II.3 above) (A. Owen 1990; P. Hall 1990): ”−2 logLR ∼
χ2(q)”. For a monograph account, see Owen [O].

In view of results of this type, it is common practice, when we want the
distribution of T (F ) when F is unknown, to use T (Fn) as an approximation
for it. This is commonly known as a plug-in estimator (just plug it in as an
approximation when we need the exact answer but do not know it); ‘empir-
ical estimator’, or ‘NPMLE’, would also be reasonable names.

Suppose we want to estimate an unknown density f , which is known to
be decreasing on [0,∞)(example: the exponential). A density is the deriva-
tive of a distribution; a concave function has a decreasing derivative (when
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differentiable). The NPMLE fn of such a density is the (left-hand) derivative
of the least concave majorant of Fn (Grenander, 1956). This example is inter-
esting in that a CLT is known for it, but with an unusual rate of convergence
– cube-root asymptotics:

n1/3(fn(t)− f(t)) → |4f ′(t)f(t)|1/3argmaxh(B(h)− h2),

with B BM and argmax the argument (= point) at which the maximum is
attained (Kim and Pollard 1990).
Semi-parametrics.

Consider the elliptical model, with multidimensional density

f(x) = const.g(Q(x)), Q(x) = (x− µ)TΣ−1(x− µ).

Here g : R+ → R+ is a function, the density generator, to be estimated. This
is the non-parametric part of the model; (µ,Σ) is as above, the parametric
part of the model. The model as a whole is then called semi-parametric.

Such models are very suited to financial applications. Notice how they
generalise the multivariate normal or Gaussian (recall Edgeworth’s theorem
of IV.3). The parametric part (µ,Σ) is clearly needed in financial modelling,
because of Markowitz’s work on risk (Σ) and return (µ), and diversification
(Σ again) (I.5, Day 2). The non-parametric part g allows us to choose a
g that reflects the tail-behaviour observed in the data. For instance, for fi-
nancial return data, it turns out that the return interval, ∆ is crucial. For
∆ long (monthly returns, say – though the rule of thumb is that 16 trad-

ing days suffice), the Gaussian (g(x) = e−
1
2
x) suffices. This is an instance

of aggregational Gaussianity – in other words, the Central Limit Theorem
(CLT – see e.g. SP). For intermediate ∆ – daily returns, say – the gener-
alised hyperbolic (GH) distributions have been found to fit well. For short
∆ – high-frequency data (tick data), g decreasing like a power (Pareto tails,
or heavy tails – e.g. Student t) is both observed and predicted theoretically
(the renormalisation group in Physics). These models have been extensively
studied; see e.g. [BKRW], and [BFK] for some applications. In some cases,
ignorance of one part of the model imposes no loss of efficiency when estimat-
ing the other part. This is the case for the elliptic model above, essentially
for reasons to do with invariance under the action of the affine group. See
[BKRW], 4.2.3, 6.3.9, 7.2.4, 7.8.3 for the theory, [BFK] for some applications.
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4. Limit theorems; Markov chains; MCMC
We quote (see e.g. SP, PfS):

1. Strong Law of Large Numbers (SLLN): if X1, X2, . . . are independent and
identically distributed (iid), with each Xn, X ∼ F , then

1

n

n∑
1

Xi → E[X] = µ :=
∫
xdF (x) (n → ∞) a.s.

This includes as a special case the Weak Law of Large Numbers (WLLN),
with convergence in probability in place of convergence a.s.
2. Central Limit Theorem (CLT). If also the Xn have variance σ2 < ∞, then

1

σ
√
n

n∑
1

(Xi − µ) → N(0, 1) (n → ∞) in distribution.

So if f is such that f(Xn) also has (finite) mean and variance, then

1

n

n∑
1

f(Xi) → E[f(X)] a.s.;
1√

n var X

n∑
1

(f(Xi)−E[f(X)]) → N(0, 1).

The mode of convergence here is convergence in distribution, also known as
weak convergence. This is weaker than convergence in probability, but when
the limit is a constant (as in WLLN), the two are equivalent.

The convergence in the Glivenko-Cantelli theorem is uniform a.s., which
is very strong. Similarly for weak convergence: for bounded continuous f ,∫

fdFn →
∫
fdF :

1

n

n∑
1

f(Xi) → E[f(X)] a.s.,

as above. The CLT above follows similarly from Donsker’s theorem.
All this can be generalised far beyond the setting above of the iid case. We

can work with Markov chains (see e.g. PfS VII) (discrete time will suffice
for us, but the theory can be developed in continuous time). In PfS VII
Markov chains are developed for discrete state spaces (finite or countably
infinite, so the states can be counted as x1, . . . , xn, . . .). The definition of the
Markov property is that, for predicting the future, knowing where one is at
the present is all that matters – if we know where we are, how we got there is
irrelevant. This irrelevance of the past suggests that as time passes the past
‘becomes forgotten’, and the chain settles down to some sort of steady state
or equilibrium distribution, π – even to a limit distribution π in favourable
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cases. Some Markov chains have no limit distribution (e.g., the trivial chain
on the integers, which just moves 1 to the right at each step). But many
Markov chains do have an equilibrium distribution, and even (if periodicity
complications are absent) a limit distribution. See e.g. PfS VII for details.
In particular, we need the idea of detailed balance (DB). A Markov chain
with transition probability matrix P = (pij) and limiting distribution π = πi

satisfies the detailed balance condition if

πipij = πjpji ∀ i, j. (DB)

We quote (Kolmogorov’s theorem) that this is the same as time-reversibility
– the chain being the same if run backwards in time.

When the Markov chain has suitably good properties (which ensure a
limit distribution) – typically, appropriate recurrence properties, of return-
ing repeatedly to its starting point – then the Markov chain satisfies a SLLN
and a CLT as above. We shall not give details (see e.g. [MeyT] Ch. 17).

It turns out that all this carries over to continuous-state Markov chains
(the case relevant to Statistics), subject to suitable restrictions on the chain,
of which Harris recurrence is the best known.
Markov Chain Monte Carlo (MCMC); Hastings-Metropolis algorithm (HM)

We briefly sketch this; see VII.6 below for statistical applications.
The aim here is to sample from a distribution π. This may be straight-

forward (see IS); if not, we may proceed as follows. We construct a Markov
chain X = (Xn) for which π is the limit distribution (we assume this has a
density, also written π). HM selects a transition density q(x, .) (see below for
choice of q), and then at each step, conditional on Xk−1 = x, HM proposes
a new value Yk drawn from this transition density q(x, .). This value Yk is
accepted as the new value Xk with probability

p(x, y) := min
(
1,

π(y)q(y, x)

π(x)q(x, y)

)
;

otherwise, Xk is taken as the previous value Xk−1. One can check that
this does indeed define a Markov chain, which satisfies (the continuous form
of) (DB) and has invariant (= equilibrium) distribution π. Here q(x, y) :=
p(|x − y|), for some transition density p of a symmetric random walk (the
choice is usually not critical, so can be made for convenience).

What is critical in applying MCMC in practice is the rate of convergence.
We have to run the chain for a long enough ‘burn-in’ period for it to be
‘approximately in equilibrium’.
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VII. BAYESIAN STATISTICS

1. Classical statistics and its limitations.
Broadly speaking, statistics splits into two main streams:

(i) classical, or frequentist, and
(ii) Bayesian.

Much of classical statistics is devoted to the following general areas: Esti-
mation of parameters (I), Hypothesis testing (II). Again, this is not exhaus-
tive: the main remaining area is Non-parametric statistics (VI).

Estimation of parameters itself splits, into
(ia). Point estimation [ e.g., maximum-likelihood estimates],
(ib). Interval estimation [e.g., confidence intervals].
Both these are open to interpretational objections. A point estimate is a
single number, which will almost certainly be wrong [i.e., will differ from the
value of the parameter it estimates]. How wrong? And what should we do
about this?

A confidence interval is more informative, because it includes an error
estimate. For instance, its mid-point can be regarded as a point estimate,
and half its length as an error estimate – leading to conclusions of the form

θ = 3.76± 0.003 (∗)

– with confidence 95% [or 99 %, or whatever]. What does this mean? It is
not a probability statement:
either θ lies between 3.73 and 3.79 [when (*) is true, so holds with probability
100 %]
or it doesn’t [when (*) is false, so holds with probability 0 %].
Problem: We don’t know which!
Interpretation. If a large number of statisticians independently replicated the
analysis leading to (*), then about 95 % of them would succeed in producing
confidence intervals covering the unknown parameter θ. But
(a) We wouldn’t know which 95 %,
(b) This is of doubtful relevance anyway. The large number of independent
replications will usually never take place in practice. So confidence state-
ments like (*) lack, in practice, a direct interpretation. [They are ‘what
happens to probability statements in classical statistics when we put the
numbers in’.]

A further problem is that small changes in our data can lead to abrupt
discontinuities in our conclusions. In borderline situations, θ ‘just within’
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the confidence interval and ‘just outside’ represent diametrically opposite
outcomes, but the data may be very close. Small changes in input should
only lead to small changes in output, rather than abrupt changes.

Hypothesis testing is open to similar objections. It is usual to have a null
hypothesis, H0, representing our present theory (the ‘default option’), and
an alternative hypothesis, H1, representing some proposed alternative theory.
At the end of the investigation, we have to choose between two alternatives.
We may be wrong: we may
reject H0 when it is true, and choose H1 [Type I error, probability α, the
significance level], or
reject H1 when it is true, and choose H0 [Type II error, probability β].
We then have a trade-off between α and β. It is not always clear how to
do this sensibly, still less optimally [it is customary to choose α = 0.05 or
0.01, and then try to minimise β, but this is merely conventional]. Again,
problems present themselves:
(i) We won’t know whether our choice between H0 and H1 was correct;
(ii) Small changes in the data can lead to abrupt changes between choosing
H0 and choosing H1.

Thus both the main branches of classical parametric statistics lead to
abruptly discontinuous conclusions and present interpretational difficulties.
One justification for Bayesian statistics is that it avoids these. There are
many others: we shall argue for Bayesian statistics below on its merits.

2. Prior knowledge and how to update it.

The difficulties identified above arise because in classical statistics we rely
entirely on the data, that is, on the sample we obtained. The mathematics
involved in classical statistics amounts to comparing the sample we actually
obtained with the large (usually, infinite) class of hypothetical samples we
might have obtained but didn’t. These include the samples that we would
obtain if we repeated our sampling independently – or that other statisticians
would obtain if they independently replicated our work. This is where the
term ‘frequentist’ for classical statistics originates: e.g., in 95 % confidence
intervals, independently replicated confidence intervals would cover the pa-
rameter θ with frequency 0.95.

The other aspect of classical statistics crucial for our purposes is that it
ignores everything before sampling. This is often unreasonable. For instance,
we may know a good deal about the situation under study, based on prior
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experience. Such situations are typical in, e.g., industrial quality control:
suppose we are employed by a rope manufacturer, and are testing the break-
ing strain of ropes in a current batch. We may have to hand large amounts
of data obtained from tests on previous batches from the same production
line. In hypothesis testing, such prior knowledge is tacitly assumed, because
we need it to be able to formulate H0 and H1 sensibly. But we may not be
willing to enter the ‘accept or reject’ framework of hypothesis testing [which
some statisticians believe is inappropriate and damaging]: how then can we
use prior knowledge? In the estimation framework also, we may know a lot
about θ before sampling [as in the rope example above]: indeed, if we do
not have some prior knowledge of the situation to be studied, we would in
practice not have enough prior interest in it to be willing to invest the time,
trouble and money to study it statistically.

Bayesian statistics addresses these aspects by providing a framework in
which
1. The statistician knows something before sampling: he has some prior
knowledge.
2. He then draws a sample, and analyses the data to extract some relevant
information.
3. He then updates his prior information with his data (or sample) informa-
tion, to obtain posterior information

(prior: before (sampling); posterior: after (sampling)).
This verbal description of the Bayesian approach is attractive, because

it resembles how we learn. Life involves (indeed, largely consists of) a con-
stant, ongoing process of acquiring new information and using it to update
our previous (‘prior’) information/beliefs/attitudes/policies.

To implement the Bayesian approach, we need some mathematics. The
formulae below derive from the work of the English clergyman
Thomas BAYES (1702-1761): An essay towards solving a problem in the
doctrine of chances (1763, posth.).
Recall that if A,B are events of positive probability,

P (A) > 0, P (B) > 0,

the conditional probability of A given (or knowing) B is

P (A|B) := P (A ∩B)/P (B).

Symmetrically,

P (B|A) := P (B ∩ A)/P (A) = P (A ∩B)/P (A).
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Combining,
P (A ∩B) = P (A|B)P (B) = P (B|A)P (A),

or

P (B|A) = P (A|B)P (B)/P (A) (BAYES’ FORMULA, or BAYES’ THEOREM).

Interpretation.
1. Think of A as a ‘cause’, B as an ‘effect’. We naturally first think
of P (effect B|cause A). We can use Bayes’ formula to get from this to
P (cause A|effect B) (think of B as an effect we can see, A as an effect we
can’t see).
2. Suppose we are interested in event B. We begin with an initial, prior
probability P (B) for its occurrence. This represents how probable we ini-
tially consider B to be [this depends on us: we will have to estimate P (B)!].
Suppose we then observe that event A occurs. This gives us new information,
which affects how probable we should now consider B to be, after observing
A [or, to use the technical term, a posteriori]. Bayes’ theorem tells us how
to do this updating: we multiply by the ratio P (A|B)/P (A):

P (B|A) = P (B).P (A|B)/P (A) :

posterior probability of B = prior probability of B × updating ratio.
We first observe some extreme cases.

Independence. If A, B are independent, P (A ∩B) = P (A).P (B), so

P (B|A) = P (A ∩B)/P (A) = P (A).P (B)/P (A) = P (B),

and similarly P (A|B) = P (A): updating ratio = 1, posterior probability =
prior probability – conditioning on something independent has no effect.
Inclusion.
1. A ⊂ B: here, P (A ∩ B) = P (A), P (A|B) = P (A ∩ B)/P (B) =
P (A)/P (B);

updating ratio P (A|B)/P (A) = 1/P (B), posterior probability = 1.
2. B ⊂ A: here, P (A∩B) = P (B), P (A|B) = P (A∩B)/P (B) = P (B)/P (B) =
1;
updating ratio P (A|B)/P (A) = 1/P (A), posterior probability = P (B)/P (A).
Partitions. The event B partitions the sample space Ω (the space of all pos-
sible outcomes) into two disjoint events B,Bc whose union is Ω. Then A is
the disjoint union of A ∩B and A ∩Bc, so

P (A) = P (A ∩B) + P (A ∩Bc) = P (A|B)P (B) + P (A|Bc)P (Bc),
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by definition of conditional probability. Similarly, if B1, B2, · · · , Bn form a
partition (are disjoint events with union Ω), A is the disjoint union of events
A ∩B1, · · · , A ∩Bn. So by the additivity property of probability,

P (A) = Σn
r=1P (A∩Br) = Σn

r=1P (A|Br)P (Br) (FORMULA OF TOTAL PROBABILITY),

using the definition of conditional probability again.
Such expressions are often used for the denominator in Bayes’ formula:

P (Br|A) = P (Br)P (A|Br)/P (A) = P (Br)P (A|Br)/ΣkP (Bk)P (A|Bk).

3. Prior and posterior densities.
Suppose now we are studying a parameter θ. Suppose we have data x

[x may be a single number, i.e. a scalar, or a vector x = (x1, · · · , xn) of
numbers; we shall simply write x in both cases]. Recall that x is an observed
value of a random variable, X say. In the density case, this random variable
has a (probability) density (function), f(x) say, a non-negative function that
integrates to 1:

f(x) ≥ 0,
∫
f(x)dx = 1

(here and below, integrals with limits unspecified are over everything).
Interpretation. P (X ∈ A) =

∫
A f(x)dx for all subsets A of the real line

R [actually, we need to restrict to suitable – ‘measurable’ – sets A, but it
suffices for our purposes to consider intervals or half-lines. For instance, if
A = (−∞, x],

F (x) := P (X ∈ (−∞, x]) = P (X ≤ x) =
∫ x

−∞
f(y)dy ∀x ∈ R;

as x varies, F (x) gives the (probability) distribution (function) of X.]
In brief: the density f(x) describes the uncertainty in the data x.

The distinctive feature of Bayesian statistics is that it treats parameters
θ in the same way as data x. Our initial (prior) uncertainty about θ should
also be described by a density f(θ):

f(θ) ≥ 0,
∫ ∞

−∞
f(θ)dθ = 1,

P (θ ∈ A) =
∫
A
f(θ)dθ ∀A ⊂ R,
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where the probability on the left is a prior probability. The analogue for
densities of Bayes’ formula

P (B|A) = P (B)P (A|B)/P (A)

now becomes
f(θ|x) = f(θ)f(x|θ)/f(x). (∗)

The density on the left is the posterior density of θ given the data x; it
describes our uncertainty about θ knowing x.

Now densities integrate to 1:∫
f(θ|x)dθ = 1,

so
∫
[f(θ)f(x|θ)/f(x)]dθ = 1:∫

f(θ)f(x|θ)dθ = f(x).

Combining,

f(θ|x) = f(θ)f(x|θ)/
∫
f(θ)f(x|θ)dθ.

In the discrete case, θ and/or xmay take discrete values θ1, θ2, · · ·, x1, x2, · · ·
only, with probabilities f(θ1), f(θ2), · · ·, f(x1), f(x2), · · ·. The above formulae
still apply, but with integrals replaced by sums:

P (X ∈ A) = Σx∈Af(x), P (θ ∈ B) = Σθ∈Bf(θ),

f(x) = Σθf(θf(x|θ),

f(θ|x) = f(θ)f(x|θ)/Σθf(θ)f(x|θ).

In the formula f(θ|x) = f(θ)f(x|θ)/f(x), it is θ, the parameter under
study, which is the main focus of interest. Consequently, the denominator
f(x) – whose role is simply to ensure that the posterior density f(θ|x) inte-
grates to 1 (i.e., really is a density) – can be omitted (or understood from
context). This replaces the equation above by a proportionality statement:

f(θ|x) ∝ f(θ)f(x|θ)

(here ∝, read as ‘is proportional to’, relates to the variability in θ, which is
where the action is). Now f(x|θ) can be viewed in two ways:
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(i) for fixed θ as a function of x. It is then the density of x when θ is the
true parameter value,
(ii) for fixed/known/given data values x as a function of θ. It is then called
the likelihood of θ (Fisher), familiar from IS, Ch. I, Ch. II, etc.

The formula above now reads, in words:

posterior ∝ prior × likelihood.

This is the essence of Bayesian statistics. It shows how Bayes’ theorem (of
which this formula is a version) may be used to update the prior informa-
tion on θ before sampling by using the information in the data x – which
is contained in the likelihood factor f(x|θ) by which one multiplies – to give
the posterior information on θ after sampling. Thus posterior information
combines two sources: prior information and data/sample/likelihood infor-
mation.

4. Examples.
Example 1. Bernoulli trials with Beta prior ([O’H], Ex. 1.4, p.5).

Here θ represents the probability of a head on tossing a biased coin. On
the basis of prior information, θ is assumed to have a prior density propor-
tional to θp−1(1− θ)q−1 (0 ≤ θ ≤ 1) for p, q > 0:

f(θ) ∝ θp−1(1− θ)q−1 (0 ≤ θ ≤ 1).

Writing

B(p, q) :=
∫ 1

0
θp−1(1− θ)q−1dθ

(the Beta function),

f(θ) = θp−1(1− θ)q−1/B(p, q).

[We quote the Eulerian integral for the Beta function: for

Γ(p) :=
∫ ∞

0
e−xxp−1dx (p > 0), B(p, q) = Γ(p)Γ(q)/Γ(p+ q) (p, q > 0).]

Note that, as p, q vary, the shape of f(θ) varies – e.g, the graph is u-shaped
if 0 < p, q < 1, n-shaped if p, q > 1. Here p, q are called hyperparameters -
they are parameters describing the parameter θ.
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Suppose now we toss the biased coin n times (independently), observing
x heads. Then x is our data. It has a discrete distribution, the binomial
B(n, θ), described by

f(x|θ) =
(
n

x

)
θx(1− θ)n−x (x = 0, 1, · · · , n).

We apply Bayes’ theorem to update our prior information on θ – our prior
values of p, q – by our data x. Now

f(x) =
∫
f(θ)f(x|θ)dθ =

∫
θp−1(1− θ)q−1

B(p, q)
.

(
n

x

)
θx(1− θ)n−xdθ

=

(
n

x

)
.

1

B(p, q)
.
∫ 1

0
θp+x−1(1− θ)q+n−x−1dθ =

(
n

x

)
.
B(p+ x, q + n− x)

B(p, q)
.

So Bayes’ theorem gives

f(θ|x) = f(θ)f(x|θ)/f(x) =
(
n

x

)
.

1

B(p, q)
.θp+x−1(1−θ)q+n−x−1/

(
n

x

)
.
B(p+ x, q + n− x)

B(p, q)

or

f(θ|x) = θp+x−1(1− θ)q+n−x−1

B(p+ x, q + n− x)
.

The posterior density of θ is thus another Beta density, B(p+ x, q + n− x).
Summarising:
• prior B(p, q) is updated by data x heads in n tosses to posterior
B(p+ x, q + n− x).
Graphs. To graph the three functions of θ – prior, likelihood and posterior –
first find their maxima.
Likelihood: f(x|θ) has a maximum where log f(x|θ) has a maximum, i.e.
where
x log θ + (n− x) log(1− θ) has a maximum, i.e. where

x

θ
− n− x

1− θ
= 0 : x− xθ = nθ − xθ : θ = x/n.

Prior: similarly, f(θ) has a maximum where log f(θ) does, i.e. where

p− 1

θ
− q − 1

1− θ
= 0 : p− pθ − 1 + θ = qθ − θ : θ = (p− 1)/(p+ q − 2).
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