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Posterior: replacing p, q by p+ x, q + n− x, f(θ|x) has a maximum where

θ = (p+ x− 1)/(p+ q + n− 2).

Now

p+ x− 1

p+ q + n− 2
= λ(

x

n
)+(1−λ)(

p− 1

p+ q − 2
), where λ =

n

n+ p+ q − 2
:

the posterior maximum is a ‘weighted average’ of the prior and likelihood
maxima, with weights 1−λ = (p+q−2)/(n+p+q−2), λ = n/(n+p+q−2)
as above. When p > 1, q > 1, p + q − 2 > 0 and both weights are positive:
this is then a genuine weighted average, a convex combination or mixture.
The posterior combines, or synthesises, the prior and the likelihood: it com-
promises between them by giving something intermediate.
Note. 1. When p, q > 1, the relative weight n on the likelihood maximum is
the sample size, that is, of how much data information we have; the relative
weight p+q−2 on the prior maximum is a measure of how concentrated about
its maximum the prior density is – that is, of how much prior information we
have. Thus both weights have clear interpretations, and the weighting has a
clear interpretation as a compromise between them.
2. For an estimator θ̂ of a parameter θ, recall that the variance var θ̂ mea-
sures the degree of uncertainty/spread/scatter of the values of θ̂ about the
mean Eθ̂ [= θ if θ̂ is unbiased]. Desirable properties of estimators include:
(i) bias Eθ̂ − θ zero or small,
(ii) variance var θ̂ minimum or small – that is, its reciprocal 1/var θ̂ maxi-
mum or large.
It is often preferable to work with the reciprocal of the variance, 1/var θ̂,
rather than the variance itself.
Definition. For an estimator θ̂ of a parameter θ, the precision of θ̂ is
prec θ̂ := 1/var θ̂.
Example 2. Normal family with normal prior ([O’H], Ex. 1.5 p.7).

Suppose x is the sample mean of a sample of n independent readings
from a normal distribution N(θ, σ2), with σ known and θ the parameter of
interest. So x is N(θ, σ2/n):

f(x|θ) = 1√
2π.σ/

√
n
exp{−1

2
(x− θ)2/

σ2

n
}.
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Suppose that on the basis of past experience [prior knowledge] the prior
distribution of θ is taken to be N(µ, τ 2):

f(θ) =
1√
2πτ

exp{−1

2
(θ − µ)2/τ 2}.

Now f(x) =
∫
f(θ)f(x|θ)dθ:

f(θ)f(x|θ) = 1

2π.τσ/
√
n
. exp{−1

2

[(θ − µ)2

τ 2
+

(x− θ)2

σ2/n

]
}.

The RHS has the functional form of a bivariate normal distribution (IV.2 D7,
[BF] 1.5). So to evaluate the θ-integration, we need to complete the square
(cf. solving quadratic equations!). First,

(x− θ)2 = [(x− µ)− (θ − µ)]2 = (x− µ)2 − 2(x− µ)(θ − µ) + (θ − µ)2.

We write for convenience

c :=
1

τ 2
+

1

σ2/n
.

Then

f(θ)f(x|θ) = const. exp{−1

2

[
c(θ − µ)2 − 2

σ2/n
(θ − µ)(x− µ) + function of x

]
}

= const. exp{−1

2
c
[
(θ − µ)2 − 2(θ − µ)(x− µ)

cσ2/n
+ function of x

]
}

= const. exp{−1

2
c
(
θ − µ− x− µ

cσ2/n

)2

+ function of x}.

Then from (*), to get the posterior density f(θ|x) we have to take the
product f(θ)f(x|θ) above, and divide by f(x) – a function of x only (θ has
been integrated out to get it). So: the posterior density f(θ|x) is itself of
the form above, as a function of θ (with a different constant and a different
function of x – but these do not matter, as our interest is in θ).

We can now recognise the posterior density f(θ|x) – it is normal. We can
read off:
(i) its mean, µ+ (x− µ)/(cσ2/n),
(ii) its variance, 1/c. Thus the posterior precision is c. But from the definition
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of c, this is the sum of 1/τ 2, the prior precision, and 1/(σ2/n), the data
precision. By (i), the mean is

µ[1− data precision

posterior precision
] + x.[

data precision

posterior precision
],

or

µ[
prior precision

posterior precision
] + x.[

data precision

posterior precision
].

This is a weighted average of the prior mean µ and the data value x (the
sample mean of the n readings), weighted according to their precisions. So:
(a) the form, mean and variance (or precision) of the posterior density are
intuitive, statistically meaningful and easy to interpret,
(b) the conclusions above show clearly how the Bayesian procedure synthe-
sises prior and data information to give a compromise,
(c) the family of normal distributions is closed in the above example: a nor-
mal prior and normal data give a normal posterior. This is an example of
conjugate priors, to which we return later.
Note. The example above on the normal distribution makes another impor-
tant point: often θ will be a vector parameter, θ = (θ1, · · · , θp) – as with, e.g.,
the normal distribution N(µ, σ2). For simplicity, the variance σ2 in the above
was taken known. But in general, we will not know σ2. Instead, we should
include it in the Bayesian analysis, representing our uncertainty about it in
the prior density. We then arrive at a posterior density f(θ|x) for the vector
parameter θ = (θ1, · · · , θp). If our interest is in, say, θ1, we want the poste-
rior density of θ1, f(θ1|x). We get this just as in classical statistics we get
a marginal density out of a joint density – by integrating out the unwanted
variables.

In the normal example above, Ex. 2, we could impose a prior density on
σ without assuming it known. This can be done ([O’H], Ex. 1.6 p.8, Lee [L],
S2.12), but there is no obvious natural choice, so we shall not do so here.

Example 3. The Dirichlet distribution ([O’H], Ex. 1.7 p.10, S10.2-6).
Consider the density in θ = (θ1, · · · , θk) on the region

θ1, · · · , θk ≥ 0, θ1 + · · ·+ θk = 1

(a simplex in k dimensions), with density

f(θ) ∝ Πk
i=1θi

ai−1
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for constants ai. We quote that the constant of proportionality is

Γ(a1 + · · ·+ ak)/Γ(a1) · · ·Γ(ak),

by Dirichlet’s integral, an extension of the Eulerian integral for the gamma
function (see [O’H] 10.4, or, say, 12.5 of
WHITTAKER, E. T. &WATSON, G. N.: Modern analysis, 4th ed., 1927/1963,
CUP).
Thus the Dirichlet density D(a1, · · · , ak) with parameters θ1, · · · , θk is

f(θ) :=
Γ(a1 + · · ·+ ak)

Γ(a1) · · ·Γ(ak)
.θ1

a1−1 · · · θkak−1.

Now draw a random sample of size n from a population of k distinct types of
individuals, with proportions θi of type i (i = 1 · · · k). Then the likelihood is

f(x|θ) = n!

x1! · · ·xk!
.θ1

x1 · · · θkxk ,

the multinomial distribution. So

f(x|θ)f(θ) = const.θ1
x1+a1−1 · · · θkxk+ak−1,

and the posterior density f(θ|x) is also of this form, with a different constant
(making it a density – i.e., integrating to 1). We recognise the functional
form of a Dirichlet density, with ai replaced by ai + xi. So

f(θ|x) = Γ(a1 + · · ·+ ak + n)

Γ(a1 + x1) · · ·Γ(ak + xk)
.θ1

a1+x1−1 · · · θkak+xk−1

(as x1 + · · ·xk = n, the sample size).
Mode.

To find the mode (the maximum of the density) of the Dirichlet density,
we have to maximise f(θ) = const.Πθi

ai−1 subject to θ1 + · · · + θk = 1, i.e.
to maximise log f(θ) = const + Σ(ai − 1) log θi subject to θ1 + · · · + θk = 1
(and θi > 0). Using a Lagrange multiplier λ, maximise

g(θ) := log f(θ) + λ(θ1 + · · · θk − 1)

= const+ Σk
1(ai − 1) log θi + λ(θ1 + · · ·+ θk − 1).

∂g/∂θi = 0 : (ai−1)/θi+λ = 0 : θi = −1

λ
(ai−1) =

1

λ
(1−ai) (i = 1, · · · k).
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Sum:

Σk
1θi = 1 =

1

λ
Σk

1(1− ai) =
1

λ
(k − Σai) : λ = (k − Σai).

So the mode is at

θi = (1− ai)/(k − Σai) (i = 1, · · · , k).

Example 4. Poisson and Gamma distributions ([O’H], Ex. 1.1, 1.2 p.21).
Data: x = (x1, · · · , xn), xi independent, Poisson distributed with param-

eter θ:

f(x|θ) = Πn
1f(xi|θ) = θx1+···+xne−nθ/x1! · · ·xn! = θnx̄e−nθ/Πxi!,

where x̄ := 1
n
Σxi is the sample mean.

Prior: the Gamma density Γ(a, b) (a, b > 0):

f(θ) =
abθb−1

Γ(b)
e−aθ (θ > 0).

So

f(x|θ)f(θ) = ab

Γ(b)Πxi!
θnx̄+b−1e−(n+a)θ,

f(θ|x) ∝ f(x|θ)f(θ) = const.θnx̄+b−1e−(n+a)θ.

This has the form of a Gamma density. So, it is a Gamma density,
Γ(n+ a, nx̄+ b):

f(θ|x) = (n+ a)nx̄+b

Γ(nx̄+ b)
.θnx̄+b−1e−(n+a)θ (θ > 0).

Means. For Γ(a, b), the mean is

Eθ =

∫ ∞

0

θf(θ)dθ =
ab

Γ(b)
.

∫ ∞

0

θbe−aθdθ.

Substituting t := aθ, the integral is Γ(b+ 1)/ab+1, which is bΓ(b)/ab+1 using
the functional equation for the Gamma function, Γ(x + 1) = xΓ(x). So the
mean is Eθ = b/a. Similarly,

Eθ2 =

∫ ∞

0

θ2f(θ)dθ = Γ(b+ 2)/ab+2,
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so varθ = E(θ2)− [Eθ]2 = b(b+ 1)/a2 − (b/a)2 = b/a2.
So by above, the prior mean is b/a; the posterior mean is (nx̄+b)/(n+a);

the data mean is x̄. Write

λ := a/(n+ a), so 1− λ = n/(n+ a) :

since
nx̄+ b

n+ a
=

a

n+ a
.
b

a
+

n

n+ a
.x̄,

posterior mean (nx̄+b)/(n+a) = λ. prior mean b/a+(1−λ). sample mean x̄.

Again, this is a weighted average, with weights proportional to n and a. Now
n is the sample size, a measure of the precision of the data, and a is the rate
of decay of the Gamma density, a measure of the precision of the prior infor-
mation.

5. Pros and cons
Advantages of the Bayesian paradigm
1. Updating.

Bayesian procedures provide an efficient algorithm for updating prior in-
formation as new data information is obtained. This is attractive theoreti-
cally: it reflects the way we all constantly update our thinking in the light of
new experience, and it works well in a range of examples, as VII.4 shows. It
also works well in many practical situations. It is particularly well suited to
situations involving time, when new information is constantly coming in. Re-
cursive algorithms exist for handling such situations on-line, or in real time,
using computers. Such algorithms are typically Bayesian; an example is the
Kalman filter (V.11 D9), used for on-line control problems (e.g., adjusting
orbits of satellites) from the 1960s on.
2. Uncertainty.

We have seldom used the words ‘probability’ or ‘random’ in the above.
Technically, Bayesian statistics differs from classical statistics by treating pa-
rameters, not as unknown constants, but – in effect (and explicitly, in [O’H])
– as random variables. This is necessary: only random variables can have
distributions, prior and/or posterior.

This change of view – away from thinking of random variables and pa-
rameters as separate, towards treating them on the same footing, thinking
about uncertainty – is often helpful, provided one takes the trouble to get
used to it. This chapter is designed to do just that!
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Some Bayesians carry this shift away from probability language to sur-
prising extremes. An example is the famous dictum by the father of 20th
century Bayesian statistics, Bruno de FINETTI (1906-1985):

PROBABILITY DOES NOT EXIST!

We would not go so far, but do recommend the Bayesian viewpoint as being
useful and workable.
3. Subjectivity.

The information in the data is objective: it is the same to all statisti-
cians following the same procedure and obtaining that data. By contrast,
the information used in the choice of prior is subjective: it reflects the expe-
rience/knowledge/beliefs of the statistician (or his client). This subjectivity
persists into the posterior distribution after we use Bayes’ Theorem: the en-
tire analysis has been personalised, to suit the statistician (or his client).
4. Decision Theory.

The Bayesian formulation (or paradigm) combines well with the ideas of
Decision Theory. For this important subject, see e.g.
D. V. LINDLEY, Making decisions, 2nd ed., Wiley, 1985.

One context in which the Bayesian/decision-theoretic approach is useful
is in business/finance/investment. Suppose one is faced with the need to take
major business decisions – e.g., whether/where/when to drill for oil. Drilling
is very expensive, and may well produce no return on the large investment
of capital in the shape of exploitable oil reserves. But, commercially viable
oil reserves can be profitably exploited – and necessarily have to be found by
risky exploratory drilling. Nothing venture, nothing win. This area involves
real options, or investment options; see e.g. [Math428], VI.6 Week 11.

In such situations, the Bayesian approach quantifies the statistician’s (or
client’s) uncertainty: decision theory then helps him to act rationally given
his beliefs.
5. Output.

The end-product of a Bayesian analysis is a posterior distribution. This
is more informative than
(i) a number [point-estimate: e.g., a maximum-likelihood estimate],
(ii) two numbers [interval estimate: e.g., a confidence interval].
It also depends continuously on what it depends on – the prior information
and the data information. The discontinuous ‘accept or reject’ framework of
hypothesis testing is avoided.
6. Nuisance parameters.
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A nuisance parameter is what its name implies: a parameter which is
present in the formulation of the model, but absent from the question of in-
terest. The parameter(s) in which we are interested are called, by contrast,
parameters of interest or interest parameters.
E.g.: Testing for equality of two normal means.
The usual classical assumption for testing H0 : µ1 = µ2 v. H1 : µ1 ̸= µ2,
for two normal populations N(µi, σ

2
i ), is to assume equality of variances:

σ1 = σ2. Testing for equality of means without assuming equality of vari-
ances is a famous statistical problem, the Behrens-Fisher problem. It has a
satisfactory solution (Scheffé’s solution) when the two sample sizes n1, n2 are
equal, but not in general.
E. g.: Testing for normality. Is this population normal? Here both µ and σ
are nuisance parameters. It is much easier to ask: is this populationN(µ0, σ0)
for specified µ0, σ0? than to ask: is it N(µ, σ) for some µ, σ? One approach
would be to estimate the mean and variance from the data, and then ‘plug
in’ these estimates to try to reduce the second question to the first – but this
sort of procedure can be hard to justify.

In principle, nuisance parameters are easily handled in Bayesian statistics.
If θ = (θ1, θ2) with θ1 the interest parameter and θ2 the nuisance parameter
(either or both of θ1, θ2 can be several-dimensional), one finds the posterior
density f(θ|x) as usual. This is the joint density of θ1 and θ2 (given the
data x), so one extracts the marginal density of θ1 (given x) as usual, by
integrating out the unwanted variable θ2:

f(θ1|x) =
∫ ∞

−∞
f(θ|x)dθ2 =

∫ ∞

−∞
f(θ1, θ2|x)dθ2.

Of course, the integration may be difficult to perform – it may, in practice,
need to be done numerically. But such problems are quite general, and not
the fault of Bayesian statistics!
7. The Likelihood Principle.

As the fundamental formula of Bayesian statistics,

posterior density is proportional to prior density times likelihood

shows, the data only enters a Bayesian analysis through the likelihood. The
Likelihood Principle (LP), formulated by G. A. BARNARD (1915-2002) (in
a series of papers, 1947-1962) and A. BIRNBAUM (1962) says that the data
should only enter any statistical analysis through the likelihood. Thus

Bayesian statistics satisfies the Likelihood Principle.
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Classical statistics, however, violates the LP. O’Hagan, for instance, dis-
cusses a number of examples, including ([O’H] 33):
Bernoulli trials, success probability θ. Consider two situations:
(a) n trials; you observe r successes;
(b) toss till you observe the rth success: you need n trials.
The two likelihoods are the same [apart from constant factors, arising because
in (b), but not in (a), the last toss must be a success]: to a Bayesian statis-
tician, these situations are equivalent. To a classical statistician, however,
they are quite different. For instance, the stopping rules are quite different
[the area of statistics where one continues sampling until something happens
and then stops is called Sequential Analysis]. [O’H] (5.14-15) points out that
(a) the minimum variance unbiased estimators of θ differ in these two cases;
(b) the very concept of unbiasedness itself violates the LP. For, it involves
an expectation over the distribution of x - the bias in a statistic T (x) is

b := E[T (x)|θ]− θ

– and this involves values of x we could have seen but didn’t. The LP insists
we take account only of the values of x we did see.

For a full-length (pro-Bayesian) account of the LP, see
BERGER, J. O. & WOLPERT, R. L. (1988): The Likelihood Principle (2nd
ed.), Institute of Mathematical Statistics.
Disadvantages of the Bayesian paradigm.
1. Choice of prior.

A Bayesian analysis cannot even begin without a choice of prior density
(or distribution). This may well be problematic:
(a) we may have little prior information;
(b) what prior information we have may not suggest a mathematically con-
venient, or even tractable, choice of prior;
(c) the choice may be to some extent arbitrary;
(d) different choices of prior may (will) lead to different conclusions;
(e) we may have too sparse a collection of suitable families of priors to hand.
Of course, problems of this sort affect classical parametric statistics too. But
classical statistics can fall back in such cases on a non-parametric approach,
for which Bayesian treatments are less well developed, and in any case the
problem is more acute in Bayesian statistics, as we have to choose suitable
forms for both the prior and the likelihood.
Undoubtedly, choice of prior is the hardest thing in many – or even most –
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Bayesian analyses, and is the feature of Bayesian statistics most objection-
able to non-Bayesians.
2. Prior ignorance.

The less a Bayesian knows, the harder he finds it to choose a prior. The
worst-case scenario for a Bayesian is little (or even no) prior knowledge. To a
non-Bayesian, this is a non-problem: simply use a classical analysis, relying
on the data (which is all we’ve got).

If θ belongs to a finite interval, [a, b] say, there is a natural choice of prior
to represent prior ignorance: the uniform density on [a, b]:

f(θ) := 1/(b− a) if a ≤ θ ≤ b, 0 else.

But, there is no analogous density in an infinite interval - the real line, say.
If f(θ) ≡ c > 0, then either c = 0, when

∫∞
−∞ f(θ)dθ = 0, or c > 0, when∫∞

−∞ f(θ)dθ = +∞. It is impossible to get
∫∞
−∞ f(θ)dθ = 1, the condition for

f(θ) ≥ 0 to be a density, without f(θ) varying with θ. But this treates some
θ-values differently from others, which is inconsistent with prior ignorance,
when we have no grounds to discriminate between different values of θ.
Note. Some Bayesian statisticians have advocated using improper priors (al-
lowing

∫∞
−∞ f(θ)dθ = +∞) in such cases, for this reason. But this is hard to

justify, and is becoming less common nowadays.
3. Objectivity.

The Bayesian paradigm is well suited to situations where a subjective
view is appropriate – particularly where a decision-taker has to act in the
face of uncertainty, as in Decision Theory. Typical examples include business-
men facing management decisions about investment (whether/where/when
to drill for oil, for instance). The manager’s judgement is fed into the choice
of prior, and he stands or falls by it. The subjective view is appropriate here.

By contrast, in science, one seeks objectivity. Whether or not Nature
works in a certain way depends on Nature (or God), not on our opinions or
beliefs [we leave to one side foundational questions about quantum mechan-
ics, and whether or not a quantum formulation necessarily involves the mind
of the observer]. Consequently, the Bayesian paradigm has met with more
resistance in science than in business, because of the higher value put there
on objectivity as against subjectivity.
Note. Lee’s book makes telling use of examples about dating rocks in geol-
ogy. Obviously the age of a rock (some hundreds of millions of years old) is
completely objective – it hs nothing to do with us or our opinions. Indeed,
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it is hard to imagine anything more indifferent to us than a chunk of rock.
It has a definite age; God (or Nature) knows this, but won’t tell us. We
thus have no means, even in principle, of assessing the age of a rock sample
(which long predates humanity!) other than our own experimentation, ob-
servation and analysis, which will provide partial knowledge with remaining
uncertainty. The Bayesian paradigm does provide a sensible way of express-
ing this. So, despite the obvious objection about subjectivity, a Bayesian
approach is quite defensible where, as here, it produces sensible results and
there is nothing else to do.
4. Summary statistics and dimensionality.

For a one-dimensional parameter θ, the output is a posterior density,
which we can graph. This is an advantage: ‘One picture is worth a thousand
words’ ! The advantage is particularly telling if, as we assume, a computer
graphics capability is available. For a two-dimensional parameter θ, the
output is a posterior density in the plane, which we can ‘graph’ in three
dimensions, using a suitable computer graphics package. Again, this is an
advantage. In three dimensions, graphics are no longer applicable, because
four dimensions would be needed.

In higher dimensions, the situation rapidly gets even worse. We cannot
graph the output; it becomes increasingly difficult even to visualise the out-
put. Instead, we seek to summarise the output, using suitable summary
statistics (e.g., mean/median/mode, covariance matrix, measures of skew-
ness/kurtosis, ...). Thus the extra information in the Bayesian output (pos-
terior density), over and above that from a classical output (summary statis-
tics), is no longer an advantage – because we cannot use it – but actually a
drawback – because we have to work to get back to summary statistics, such
as a classical treatment provides anyway.
Note. 1. Summarisation methods are discussed in detail in [O’H], 2.1 – 2.24.
2. The dimensional aspects above underscore the principle of parsimony: one
should seek to work in as low a dimensionality (i.e., with as few parameters)
as possible. [It is quite common to find the complexity of a theory growing
uncontrollably with increase in dimension. This phenomenon is called the
curse of dimensionality, a term due to Richard Bellman.]
3. If the right dimensionality is not clear, we may be able to formalise the
trade-off between the better fit a higher dimension can provide against the
extra complexity by using methods such as Akaike’s Information Criterion
(AIC): see e.g. [BF] 5.2.1, [O’H], Ch. 7.
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5. Integration.
Bayesian statistics involves the need to integrate in several ways:

(i) to get f(x|θ)f(θ)dθ,
(ii) to get marginal posterior densities from joint posterior densities - e.g., to
eliminate nuisance parameters,
(iii) to produce summary statistics as above - e.g., posterior means, etc.
Such integrations may be hard or impossible to do analytically. We may
need to integrate numerically. This may be computer-intensive, and involves
a good knowledge of, e.g.,
(a) numerical analysis as a branch of mathematics,
(b) computer implementation - e.g., by using the NAG Library [NAG = Nu-
merical Algorithms Group, Oxford University].

Since c. 1990 (e.g. the Gelfand-Smith paper in JASA), much theoreti-
cal and practical progress in such areas has been made, using Markov Chain
Monte Carlo (MCMC) methods – techniques such as the Metropolis-Hastings
algorithm (VI.4 above and VII.6 below) and the Gibbs sampler. Such meth-
ods are extensively used nowadays (see e.g. the MSc in Statistics here).
MCMC often provides the crucial numerical breakthrough needed to make
implementation of a complicated Bayesian analysis practically feasible.
Postscript: Amenability.

When discussing prior ignorance (2 above), we noted that there is no uni-
form distribution on the line R (w.r.t. Lebesgue measure); similarly for the
integers Z (w.r.t. counting measure). Both are locally compact, non-compact
topological groups; such groups have a Haar measure – a measure invariant
under the group action (addition here). Haar measure is only finite when
the group is compact; it can then be normalised to be a probability measure,
and so serve as a uniform distribution. But both R and Z are σ-compact (a
countable union of compact sets, [−n, n] or Nn = {−n,−n+1, . . . , n−1, n}),
each of which does have a uniform distribution, and one may use this as a
proxy for the non-existent uniform distribution on the group by approxima-
tion. What this actually shows is that R and Z are amenable – possess an
invariant mean (which serves, in some sense, as a substitute for a uniform
distribution). The standard work on amenability is
Alan L. T. PATERSON, Amenability, AMS, 2000.
We refer there for more, including an extensive bibliography and applications
to Bayesian Statistics.
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