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6. Hierarchical models; Markov Chain Monte Carlo (MCMC).

In the Bayesian paradigm, everything is random, including the parame-
ters; also, the parameters are drawn from a prior, and we may have difficulty
in choosing the prior. Such difficulties may be lessened if we draw the param-
eters of the prior from some ‘prior prior’, which will itself have parameters,
called hyperparameters. Such a model is called a hierarchical model. Our
main sources here are Robert [R] Ch. 8,9, Gelman et al. [GCSR] Ch. 5, 11.

Definition. A hierarchical Bayes model is a Bayesian model (f(x|θ), π(θ))
in which the prior π(θ) is decomposed into conditional distributions

π1(θ|θ1), π2(θ1|θ2), . . . , πn(θn−1|θn)

and a marginal πn+1(θn|θn) such that

π(θ) =
∫
. . .

∫
π1(θ|θ1)π2(θ1|θ2)πn(θn−1|θn)πn+1(θn)dθ1 . . . dθn+1. (H)

The parameters θi are called hyperparameters of level i.

A hierarchical Bayes model is itself a Bayesian model, but the decomposi-
tion (H) is often useful – e.g., in MCMC (below), and in revealing structural
information.

One rarely needs to go beyond n = 2, and we shall not do so. So we shall
always have

θ|θ1 ∼ π1(θ|θ1), θ1 ∼ π2(θ1). (H)

Here the distribution of θ is a mixture of the θ1, with mixing distribution π2.

Example: Random effects in the linear model.
We may have a mixed model, with some fixed effects, as in IV, and some

random effects. The classical instance of this is Henderson’s work on the
breeding of dairy cows (1950). The fixed effects are the objects of study –
typically, diet, of interest for its effect on milk yield. The random effects are
the animals – animals differ, just as people do. It is conventional to write
the model equation here as

y = Xβ + Zu+ ϵ,
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where
W = (X,Z)

is the n × (p + q) design matrix, X (n × p) and Z (n × q) are the design
submatrices for the fixed and random effects. We take the random effects
u and the error ϵ uncorrelated (independent when both are Gaussian, as we
may as well assume here). The best linear unbiased estimator (BLUE) of
IV.1 is conventionally called a best linear unbiased predictor (BLUP) here.
These are the solutions of Henderson’s mixed model equations (MMEs). Two
different forms of the BLUP are given in [BF] 9.1. The use of Bayes’ theorem
is mentioned there. This is a hierarchical model with

y|θ ∼ N(θ,Σ1), θ|β ∼ N(Xβ,Σ2).

Here the mean θ of y is decomposed into the fixed effects Xβ and the random
effects Zη, where η ∼ N(0,Σ2).
Education.

Mixed models are widely used in educational studies (and more widely
in Social Statistics). Here the fixed effects are the ones being studied – con-
cerning, e.g., influence on performance of changes in syllabus, examination
mode etc. The random effects are the pupils.
Finance.

Here the fixed effects are state of the economy, industrial sector etc. The
random effects are the specific characteristics of the individual firms involved
in the study.
Bayesian v. classical.

Strictly speaking, whether this procedure is classical or Bayesian depends
on what our inference is about. The procedure is classical if the inference
is about the fixed effects (β), but Bayesian if it is about the overall effects (θ).

Normal mean-variance mixtures (NMVM); normal variance mixtures (NVM).
The Bessel function of the third kind, Kλ (λ real) is defined (for our pur-

poses) by the integral representation

Kλ(x) =
1

2

∫ ∞

0
uλ exp{−1

2
(u+ 1/u)}du/u (x ≥ 0).

Then for ψ, χ > 0,

f(x) :=
(ψ/χ)

1
2
λ

2Kλ(
√
ψχ)

xλ−1 exp{−1

2
(ψx+ χ/x)} (x > 0)
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is a probability density, the generalised inverse Gaussian (GIG).
The distribution of x ∼ N(µ + βσ2, σ2), where σ2 is sampled randomly

from GIG, forms a normal mean-variance mixture (NMVM), with mixing
distribution GIG. It is called the generalised hyperbolic distribution, GH.
The case β = 0 is simpler; we then get a normal variance mixture (NVM).

The GH distributions have been much used in mathematical finance,
specially for return distributions with intermediate return interval – say,
daily returns (Bingham & Kiesel 2001; Barndorff-Nielsen 1970s-90s; Eberlein
1990s). The log-density is a (branch of a) hyperbola (hence the name). As a
hyperbola has linear asymptotes, the log-density decays linearly at ±∞. By
contrast, the Gaussian log-density (monthly returns) decays quadratically,
while the Student t log-density (tick data) decays logarithmically.

The GH distributions can be defined in any number of dimensions. They
have two important general properties:
1. They are elliptical. They are an important parametric special case within
this semi-parametric setting; see I.6.2 D2, V.6 D6, VI.3 D10.
2. They are self-decomposable: they belong to the class SD of distributions
of stationary AR(1) time-series models,

Xt = ρXt−1 + ϵt.

Bayesian sampling; HM.
We return to (H), in the form

π(θ|x) =
∫
π1(θ|x, λ)π2(λ|x)dλ. (H)

If we can sample efficiently from π1 and π2, we can use MCMC (in the form of
a Bayesian sampling technique, data augmentation (Tanner & Wong, 1987))
to sample from π, by the following iterative algorithm.
Initialisation: Start with an arbitrary value λ0.
Iteration: For i = 1, . . . , k, generate
a. θi ∼ π1(θ|x, λi−1);
b. λi ∼ π2(λ|x, θi).
The generation of θi only depends on θi−1, not on previous values, so (θi)
has the Markov property. Under suitable regularity conditions, this Markov
chain will be ergodic, with limiting distribution π; furthermore, the approach
to stationarity will often be geometrically fast.

The Hastings-Metropolis algorithm HM in this setting runs as follows.
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To sample from a distribution π known up to a normalising factor, and given
a transition kernel q(θ|θ′), HM proceeds as follows.
(i) Start with θ0 arbitrary.
(ii) Update from θm to θm+1 by:
1. Generate ξ ∼ q(.|θm);
2. Define

ρ :=
( π(ξ)q(θm|ξ)
π(θm)q(ξ|θm)

)
∧ 1.

3. Take
θm+1 := ξ with probability ρ, θm otherwise.

Again under suitable regularity conditions, the Markov chain (θm) converges
to the equilibrium distribution π as m increases. The convergence is often
geometrically fast, again under suitable conditions.
Graphical models

It is possible to model complex statistical situations, with many variables,
some of which are conditionally independent given others. Such conditional
independence can be conveniently encoded, and represented visually, using
graphs (in the sense of Graph Theory, an important branch of Combinatorial
Theory). We must be brief here; we refer for a monograph treatment to
Steffen L. LAURITZEN, Graphical models, OUP, 1996.

Graphical models originate in three different areas:
(i) Statistical Physics, in the work of Gibbs1. Here the idea is that particles
can only interact with their immediate neighbours.
(ii) Genetics. This, incidentally, is one of the major application areas of
heirarchical models, MCMC etc. (Human Genome Project, etc.).
(iii) Contingency tables. The analysis of complicated multi-dimensional con-
tingency tables, where the data is counts cross-classified by characteristics,
is important in the Social Sciences.

See in particular Lauritzen, Ch. 4 (Contingency tables), Ch. 5 (Mul-
tivariate normal models), 7.3.1 (MCMC); also EM algorithm (two steps –
expectation, maximisation), 7.4.1.

1J. W. Gibbs (1839-1903), American; one of the three founding fathers of Statistical
Physics, with James Clerk Maxwell (1831-1879), Scottish, and Ludwig Boltzmann (1844-
1906), German.
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7. Further Bayesian aspects.
1. Posterior means [O’H] 1.25, p.15].

If t is an estimate of θ given data x, the mean squared error is

E[(t− θ)2|x] = E[t2|x]− 2E[tθ|x] + E[θ2|x] = t2 − 2tE[θ|x] + E[θ2|x]

(t is a statistic, that is, a function of the data x, so is known when x is known,
and can be taken out of the expectation signs). Add and subtract (E[θ|x])2:

E[(t− θ)2|x] = (t− E[θ|x])2 + var(θ|x).

Thus the value of t which minimises the posterior expected squared error is
t = E[θ|x], the posterior mean. This now has two roles:
(i) minimising mean square error,
(ii) location summary of the posterior distribution.
2. Repeated use of Bayes’ Theorem [O’H] 3.5, p. 66].

Suppose now our data x is partitioned into (x1, x2), where we observe x1
first and x2 second. With prior f(θ), we have two stages:
Stage 1. Posterior

f(θ|x1) = f(θ)f(x1|θ)/f(x1), f(x1) =
∫
f(θ)f(x1|θ)dθ. (i)

Stage 2. The prior density for stage 2 is the posterior density above after
stage 1. The likelihood is f(x2|θ, x1). So the posterior is

f(θ|x1, x2) = f(θ|x1)f(x2|θ, x1)/f(x2|x1), f(x2|x1) :=
∫
f(θ|x1)f(x2|θ, x1)dθ.

(ii)
Substitute f(θ|x1) from (i) into (ii):

f(θ|x1, x2) =
f(θ)f(x1|θ)f(x2|θ, x1)

f(x1)f(x2|x1)
.

Now f(x2|x1) := f(x1, x2)/f(x1), so the denominator is f(x1, x2). Similarly,
the numerator is

f(θ).
f(θ, x1)

f(θ)
.
f(θ, x1, x2)

f(θ, x1)
= f(θ, x1, x2) = f(θ)f(x1, x2|θ).

So
f(θ|x1, x2) = f(θ).f(x1, x2|θ)/f(x1, x2),
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the usual result of Bayes’ Theorem for updating by the whole data x =
(x1, x2) in one step. So:

Proposition. If data x = (x1, x2) arrives in two stages, two applications of
Bayes’ Theorem, updating by x1 first, then by x2 given x1, is equivalent to
one application of Bayes’ Theorem updating by x = (x1, x2).

Corollary. If data x = (x1, · · · , xn) arrives successively in n stages, n appli-
cations of Bayes’ Theorem – updating by xi given x1, · · · , xi−1 (i = 1, · · · , n)
– are equivalent to one application of Bayes’ theorem.

The systematic repeated use of Bayes’ theorem is important in the sub-
jects of Time Series (Ch. V) and Forecasting. In particular, the repeated
recursive use of Bayes’ theorem occurs in the Kalman filter (V.11), which is
widely used – for instance, in engineering applications [on-line, or real-time,
control of spacecraft, etc.] and in econometric time-series.
3. Sufficiency [O’H] 3.9, 69].

Suppose now that x = (x1, x2), where x1 is informative about θ, x2 is un-
informative. This is the idea of sufficiency, already encountered in classical
statistics. We give a Bayesian treatment. To say that x2 is uninformative
means that x2 cannot affect our views on θ, that is,
(i) f(θ|x) = f(θ|x1, x2) does not depend on x2, i.e.

f(θ|x1, x2) = f(θ|x1), or
f(θ, x1, x2)

f(x1, x2)
=
f(θ, x1)

f(x1)
:

f(θ, x1, x2)

f(θ, x1)
=
f(x1, x2)

f(x1)
, i.e. f(x2|x1, θ) = f(x2|x1) :

(ii) f(x2|x1, θ) does not depend on θ.
Either of (i), (ii), which are equivalent, can be used as the definition of suf-
ficiency in a Bayesian treatment. Notice that (i) is essentially a Bayesian
statement: it is meaningless in classical statistics, as there θ cannot have a
density.

Now recall the classical Fisher-Neyman Factorisation Criterion for suffi-
ciency: the likelihood f(x|θ) factorises as
(iii) f(x|θ), or f(x1, x2|θ), = g(x1, θ)h(x1, x2),
for some functions g, h. As before:
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Proposition. x1 is sufficient for θ iff the Factorisation Criterion (iii) holds.

Proof. (ii) ⇒ (iii):

f(x|θ) = f(x1, x2|θ) = f(x1|θ)f(x2|x1, θ) (as in 2 above)

= f(x1|θ)f(x2|x1) (by (ii)),

giving (iii).
(iii) ⇒ (i): By Bayes’ Theorem in the form ‘posterior proportional to prior
times likelihood’, the factor h(x1, x2) in (iii) can be absorbed into the con-
stant of proportionality [which is unimportant: it can be recovered from the
remaining terms, its role being merely to make these integrate to one]. Then
x2 drops out, so does not appear in the posterior, giving (i). //

Note. This proof is easier than the classical one! To a Bayesian, it is also
more intuitive and revealing.
4. Exponential families.

A likelihood f(x|θ) belongs to the exponential family if it is of the form

f(x|θ) = exp{a(θ)u(x) + b(θ) + k(x)}

(as usual, we use vector notation: x, θ may be several-dimensional; see be-
low). Exponential families (introduced in 1935-36 by Darmois, Pitman and
Koopman) arise naturally in classical statistics. We quote: if a statistic u(x)
is minimum-variance (‘efficient’) and unbiased for θ, then the likelihood can
be written in the above form (this follows from the conditions for equality
in the Cramér-Rao inequality giving the minimum-variance bound, or ‘in-
formation bound’). By the Fisher-Neyman Factorisation Criterion, u(x) is
sufficient for θ. So efficiency implies sufficiency and membership of an expo-
nential family.

Now efficiency is not a Bayesian concept (it looks at the distribution of
the statistic, so at values we could have seen but didn’t, not just at the like-
lihood), nor is unbiasedness (for the same reason). However, sufficiency is
important in Bayesian statistics also (above), as are exponential families.

First, we generalise the exponential family approach to cover several pa-
rameters and several sufficient statistics: call f(x|θ) a member of the k-
parameter exponential family if

f(x|θ) = exp{Σk
1Aj(θ)Bj(x) + C(x) +D(θ)}.
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Then by the Fisher-Neyman Factorisation Criterion, B1(x), · · · , Bk(x) are
sufficient statistics for the k parameters A1(θ), · · · , Ak(θ). Suppose the prior
is of the form

f(θ) = f(θ; a1, · · · , ak, d) = exp{Σk
1ajAj(θ) + dD(θ) + c(a1, · · · , ak, d)}.

Then the posterior f(θ|x) ∝ f(θ)f(x|θ), i.e. to

exp{Σk
1Aj(θ)(aj +Bj(x)) + (d+ 1)D(θ)},

i.e. to
f(θ; a1 +B1(x), · · · , ak +Bk(x); d+ 1).

This is a (k+1)-dimensional exponential family. Its importance is that if the
prior belongs to this family, so too does the posterior: the family is closed
under sampling. This property is of crucial importance, partly because it is
so mathematically convenient, partly because it shows up the structure of
the problem. For instance, we shall return below to two of the examples we
met in VII.2, where the relationship between prior and likelihood can now
be seen in this light to be natural. The prior above is called the natural
conjugate family to the exponential family above.
Example 1. Bernoulli distribution. For x = 0, 1,

f(x|θ) = θx(1− θ)1−x =
( θ

1− θ

)x
(1− θ) = exp{x log

( θ

1− θ

)
+ log(1− θ)} :

here k = 1, A1(θ) = log
(

θ
1−θ

)
, B1(x) = x,C(x) = 0, D(θ) = log(1− θ).

The natural conjugate family is

f(θ; a1, d) = exp{a1A1(θ) + dD(θ) + c(a1, d)}

= exp{a1 log
( θ

1− θ

)
+ d log(1− θ) + c(a1, d)}

= θa1(1− θ)d−a1 exp{c(a1, d)},

which is Beta B(a1, d− a1) as in VII.2.
2. Normal distribution, N(µ, σ2): θ = (µ, σ2),

f(x|θ) = exp{−1

2

x2

σ2
+
xµ

σ2
− 1

2

µ2

σ2
− log σ − 1

2
log 2π},
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k = 2, A1(θ) = 1/σ2, B1(x) = −1
2
x2, A2(θ) = µ/σ2, B2(x) = x,C(x) =

0, D(θ) = −1
2
[log(2πσ2) + µ2/σ2]. The natural conjugate family is

f(θ; a1, a2, d) = exp{a1A1(θ) + a2A2(θ) + dD(θ) + c(a1, a2, d)}

∝ (σ2)−
1
2
d exp{a1

σ2
+
a2µ

σ2
− 1

2
dµ2σ2}.

The exponent is σ2 times

−1

2
d(µ2 − 2a2µ

d
+ a1) = −1

2
d[(µ− a2

d
)2 − a1 −

a2
2

d2
].

Writing m := a2/d, b := −a1 − a2
2/2d,

f(θ; a1, a2, d) ∝ (σ2)−
1
2
d exp{−1

2
d(µ−m)2/σ2 − b/σ2}.

For σ known, this is a normal prior for µ, as in VII.2. With neither σ nor µ
known (both parameters), this is the natural conjugate prior to the normal

N(µ, σ2). More generally, one can work with (σ2)−t in place of (σ2)−
1
2
d. Here

m, d, b (and t if present) are hyperparameters for the parameters µ, σ.
5. Asymptotic normality [O’H] 3.18, p. 74].

We recall (I.3) that in classical statistics, the maximum-likelihood esti-
mator θ̂ of θ based on n i.i.d. readings x1, · · · , xn is asymptotically normal,
with mean θ and variance 1/(nI(θ)), where I(θ) is the Fisher information
per reading:

I(θ) := E[(ℓ′(θ))2] = −E[ℓ′′(θ)], ℓ(θ) := log f(x|θ)

the log-likelihood (the likelihood itself is usually written L(θ) in classical
statistics). This result needs some regularity conditions:
(i) enough smoothness to justify differentiating under the integral sign twice
with respect to θ (as in the derivation of the above equation for the informa-
tion, and in the proof of the Cramér-Rao inequality),
(ii) that the support of the likelihood (the region where it is positive) should
not depend on θ.
Now the above is a large-sample result, in which the sample size n increases.
It is thus natural to expect that in this situation, the data information will
swamp the prior information, and the same result will hold in the Bayesian
case also. This is indeed so; see O’Hagan Sections 3.18-26 for details.
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6. Shrinkage [O’H] 6.42, p. 159].
In the Bayesian paradigm the posterior gives a compromise between prior

and likelihood. This ‘pulls’ the likelihood towards the prior, so ‘pulls’ a clas-
sical estimate towards a prior estimate. Similarly with several parameters. It
is thus typical of the Bayesian paradigm that estimators are less spread out
than in the classical paradigm, a phenomenon known as shrinkage. Similar
shrinkage effects occur in higher dimensions – the James-Stein phenomenon.
7. Invariance and Jeffreys priors.

Suppose we work with a parameter θ, with information per reading I(θ) =
E[(ℓ′(θ)2] =

∫
((log f)θ)

2f(θ). If we reparametrise to ϕ := g(θ), then as
∂/∂ϕ = (dθ/dϕ)(∂/∂ϕ),

I(ϕ) = (dθ/dϕ)2I(θ).

The idea of choosing a prior which is large where the information is large
is very attractive (and reminiscent of maximum-likelihood estimation!). Jef-
freys suggested choosing a prior of the form

π(θ) ∝
√
I(θ)

– the square root to make the prior invariant under reparametrisation:

π(ϕ)dϕ ∝
√
I(ϕ)dϕ =

√
I(θ)dθ ∝ π(θ)dθ : π(ϕ)dϕ = π(θ)dθ

(both sides integrate to 1, so we can take equality here). There is an ex-
tension to higher dimensions, using the Fisher information matrix and the
square root of the modulus of its determinant.

Bayesian procedures are in general not invariant under reparametrisa-
tion! This can be seen as a drawback, but Bayesians argue that one needs
to incorporate a loss function (or utility function), and one should seek a
parametrisation that suits this loss function.
Note. Sir Harold JEFFREYS (1891-1989) was primarily a geophysicist, and
wrote an influential book The Earth: Its Origin, History and Physical Con-
stitution, 19242. He was also a pioneer of Bayesian statistics, and wrote an
early book on it, Theory of probability (1st ed. 1939, 2nd ed. 1960, 3rd
ed. 1983). He also wrote (with his wife) ‘Jeffreys and Jeffreys’, Methods of
mathematical physics, CUP, 1946.

2Jeffreys was the first to suggest that the earth’s core is liquid – but he was a strong
opponent of continental drift!

10



8. The Bayes linear estimator.
If d(x) is a linear function, a+ b′z, where z = z(x) and b are vectors, the

quadratic loss is

D = E[(a+ b′z − θ)2]

= E[a2 + 2ab′z + b′zz′b− 2aθ − 2b′zθ + θ2]

= a2 + 2ab′Ez + b′E(zz′)b− 2aEθ − 2b′E(zθ) + E(θ2).

Add and subtract [E(θ)]2, (b′Ez)2 = b′EzEz′b and 2b′EzEθ. Write V :=
var z = E(zz′) − EzEz′ for the covariance matrix of z, c := cov(θ, z) =
E(zθ) − EzEθ for the covariance vector between θ and the elements of the
vector z.

D = (a+ b′Ez − Eθ)2 + b′(varz)b− 2b′cov(z, θ) + varθ :

D = (a+ b′Ez − Eθ)2 + b′V b− 2b′c+ varθ. (1)

Write b∗ := V −1c, D∗ := var(θ)− c′V −1c. Then this becomes

D = (a+ b′Ez − Eθ)2 + (b− b∗)′V (b− b∗) +D∗ (∗)

(the quadratic terms check as b∗TV b∗ = cTV −1V V −1c = cTV −1c, the linear
terms as c = V b∗).

The third term on the right in (∗) does not involve a, b, while the first
two are non-negative (the first is a square, the second a quadratic form with
matrix V , non-negative definite as V is a covariance matrix). So the expected
quadratic loss D is minimised by choosing b = b∗, a = −b∗′Ez + Eθ. Then

d(x) = Eθ + cV −1(z − Ez), c := cov(z, θ), V := var(z).

This gives the Bayes linear estimator of θ based on data z = z(x). This is
the best approximation to the posterior mean (in the sense of mean-square
error) among the class of linear estimators (in z = z(x)).
Distributional assumptions.

The Bayes linear estimator depends only on first and second moments:
Eθ, Ez, c = cov(z, θ), V = var(z). So we do not need to know the full
likelihood, just the first and second moments of (θ, z(x)), the parameter and
the function z in which we want the estimator to be linear.
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Application.
The Bayes linear estimator is used in the construction of the Kalman fil-

ter – state-space models for Time Series.
9. Bayesian solution of the equity premium puzzle.

Following Markowitz (I.5), we should diversify our financial savings into
a range of assets in our portfolio – including cash (invested risklessly – e.g.,
by buying Government bonds, or ‘gilts’, or putting it in the bank or building
society – which we suppose riskless here, discounting such disasters as the
Icelandic banking crisis, Northern Rock, RBS etc.) and risky stock. There
is no point in taking risk unless we are paid for it, so there will be an excess
return – equity premium – µ−r of the risky stock (return µ) over the riskless
cash (return r), to be compared with the volatility σ of the risky stock via
the Sharpe ratio (or market price of risk) λ := (µ − r)/σ). Historical data
show that the observed excess return seems difficult to explain.

A Bayesian solution to this ‘equity premium puzzle’ has been put forward
by Jobert, Platania and Rogers. They conclude that there is no equity pre-
mium puzzle, if one uses a Bayesian analysis to reflect fully one’s uncertainty
in modelling this situation. See
[JPR] A. JOBERT, A. PLATANIA & L. C. G. ROGERS, A Bayesian so-
lution to the equity premium puzzle. Preprint, Cambridge (available from
Chris Rogers’ homepage: Cambridge University, Statistical Laboratory).
The Twenties Example [JPR]. One observes daily prices of a stock for T
years, with an annual return rate of 20% and an annual volatility of 20%.
How large must T be to give confidence intervals of ±1% for (i) the volatility,
(ii) the mean? Answers: (i) about 11; (ii) about 1,550!!

This illustrates what is called mean blur; see e.g.
D. G. LUENBERGER, Investment Science, OUP, 1997.
Rough explanation: for the mean, only the starting and final values matter
(so effective sample size is 2); for the volatility, everything matters.
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