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4. Quadratic forms in normal variates
We give a brief treatment of this important material; for full detail see

e.g. [BF], 3.4 – 3.6. Recall (IV.3, D5)
(i) with x ∼ N(µ,Σ), linear forms Ax, BX are independent iff AΣBT = 0;
(ii) for a projection, P 2 = P (P is idempotent); for a symmetric projection,
P TP = P .
We restrict attention, for simplicity, to µ = 0, Σ = σ2I, x ∼ N(0, σ2I).

It turns out that the distribution theory relevant to regression depends on
quadratic forms in normal variates, xTAx for a normally distributed random
vector x, and that we can confine attention to projection matrices. For P a
symmetric projection,

xTPx = xTP TPx = (xP )T (xP ),

which reduces from quadratic forms to linear forms – which are much eas-
ier! So: if xP1x, xP2x are quadratic forms in normal vectors x, with P1, P2

projections, xTP1x and xTP2x are independent iff

P1P2 = 0 :

P1, P2 are orthogonal projections. Recall that projections P1, P2 are orthog-
onal if their ranges are orthogonal subspaces, i.e.

(xP1).(xP2) = 0 ∀ x : xTP T
1 P2x = 0 ∀x; P T

1 P2 = 0 ∀x; P1P2 = 0

for Pi symmetric. Note that for P a projection, I−P is a projection orthog-
onal to it:

(I−P )2 = I−2P+P 2 = 1−2P+P = I−P ; P (I−P ) = P−P 2 = P−P = 0.

If λ is an eigenvalue of A, λ2 is an eigenvalue of A2 (check). So if a pro-
jection P has eigenvalue λ, λ2 = λ: λ = 0 or 1. Also, the trace is the sum of
the eigenvalues; for a projection, this is the number of non-zero eigenvalues;
this is the rank. So:

For a projection, the eigenvalues are 0 or 1, and the trace is the rank.
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By Spectral Decomposition (III.1 D4), a symmetric projection matrix P can
be diagonalised by an orthogonal transformation O to a diagonal matrix D:

OTPO = D, P = ODOT ;

as above, the diagonal entries dii are 0 or 1, and we may re-order so that the
1s come first. So with y := OTx,

xTPx = xTDOTx = yTDy = y21 + . . .+ y2r .

Normality is preserved under orthogonal transformations (check!), so also
y ∼ N(0, σ2I). So y21+. . .+y

2
r is σ

2 times the sum of r independent squares of
standard normal variates, and this sum is χ2(r) (by definition of chi-square):

xTPx ∼ σ2χ2(r).

If P has rank r, I − P has rank n − r (where n is the sample size – the
dimension of the vector space we are working in):

xT (I − P )x ∼ σ2χ2(n− r),

and the two quadratic forms are independent.
It turns out that all this can be generalised, to the sum of several pro-

jections, not just two. This result – the key to all the distribution theory in
Regression – is Cochran’s theorem (William G. COCHRAN (1909-1980) in
1934); [BF] Th. 3.27):

Theorem (Cochran’s Theorem). If

I = P1 + . . .+ Pk

with each Pi a symmetric projection with rank ni, then
(i) the ranks sum: n = n1 + . . .+ nk;
(ii) each quadratic form Qi := xTPix ∼ σ2χ2(ni);
(iii) Q1, . . . , Qk are mutually independent;
(iv) P1, . . . , Pk are mutually orthogonal: PiPj = 0 for i ̸= j.

The quadratic forms that we encounter in Statistics are called sums of squares
(SS) – for regression (SSR), for error (SSE), for the hypothesis (SSH), etc.
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Recall the definition of the Fisher F -distribution with degrees of freedom
(df) m and n (note the order): F (m,n) is the distribution of the ratio

F :=
U/m

V/n
,

where U , V are independent chi-square random variables with df m, n (see
e.g. [BF] 2.3 for the explicit formula for the density, but we shall not need
this).

Recall also (or, if you have not met these, take a look at a textbook):
(i) Analysis of variance (ANOVA) (see e.g. [BF] Ch. 2). Here one tests for
differences between the means of different (normal) populations by analysing
variances. Specifically, one looks at within-groups variability and between-
groups variability, and rejects the null hypothesis of no difference between
the group means if the second is too big compared to the first. As above,
one forms the relevant F -statistic, and rejects if F is too big. Here one has
qualitative factors (which group?).
(ii) Analysis of Covariance (ANCOVA) (see e.g. [BF] Ch. 5. Similarly for
ANCOVA, where one has both qualitative factors (as with ANOVA) and
quantitative ones (covariates), as with Regression.
(iii) Tests of linear hypotheses in Regression (see e.g. [BF] Ch. 6). Here we
reject if SSH is too big compared to SSE.

5. Estimation theory for the multivariate normal.
Given a sample x1, . . . , xn from the multivariate normal Np(µ,Σ), form

the sample mean (vector) and the sample covariance matrix as in the one-
dimensional case:

x̄ :=
1

n

n∑
i=1

xi, S :=
1

n

n∑
i=1

(xi − x̄)T (xi − x̄).

The likelihood for a sample of size 1 is

L(x|µ,Σ) = (2π)−p/2|Σ|−1/2 exp{−1

2
(x− µ)TΣ−1(x− µ)},

so the likelihood for a sample of size n is

L = (2π)−np/2|Σ|−n/2 exp{−1

2

n∑
1

(xi − µ)TΣ−1(xi − µ)}.
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Writing
xi − µ = (xi − x̄)− (µ− x̄),

n∑
1

(xi − µ)TΣ−1(xi − µ) =
n∑
1

(xi − x̄)TΣ−1(xi − x̄) + n(x̄− µ)TΣ−1(x̄− µ)

(the cross-terms cancel as
∑n

1 (xi − x̄) = 0). The summand in the first term
on the right is a scalar, so is its own trace. Since trace(AB) = trace(BA)
and trace(A+B) = trace(B + A),

trace(
n∑
1

(xi − x̄)TΣ−1(xi − x̄)) = trace(Σ−1
n∑
1

(xi − x̄)T (xi − x̄))

= trace(Σ−1.nS) = n trace(Σ−1S).

Combining,

L = (2π)−np/2|Σ|−n/2 exp{−1

2
n trace(Σ−1S)− 1

n
n(x̄− µ)TΣ−1(x̄− µ)}.

Write
V := Σ−1

(‘V for variance’); then

ℓ = const− 1

2
n trace(V S)− (x̄− µ)TV (x̄− µ).

So by the Fisher-Neyman Theorem, (X̄, S) is sufficient for (µ,Σ). It is in
fact minimal sufficient (Problems 2 Q2).

These natural estimators are in fact the MLEs:

Theorem. For the multivariate normal Np(µ,Σ), x̄ and S are the maximum
likelihood estimators for µ, Σ.

Proof. Write V = (vij) := Σ−1. By above, the likelihood is

L = const.|V |n/2 exp{−1

2
n trace(V S)− 1

2
n(x̄− µ)TV (x̄− µ)},

so the log-likelihood is

ℓ = c+
1

2
n log |V | − 1

2
n trace(V S)− 1

2
n(x̄− µ)TV (x̄− µ).
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The MLE µ̂ for µ is x̄, as this reduces the last term (the only one involving
µ) to its minimum value, 0. For a square matrix A = (aij), its determinant
is

|A| =
∑
j

aijAij

for each i, or
|A| =

∑
i

aijAij

for each j, expanding by the ith row or jth column, where Aij is the cofactor
(signed minor) of aij. From either,

∂|A|/∂aij = Aij,

so
∂ log |A|/∂aij = Aij/|A| = (A−1)ji,

the (j, i) element of A−1, recalling the formula for the matrix inverse (or
(A−1)ij if A is symmetric). Also, if B is symmetric,

trace(AB) =
∑
i

∑
j

aijbji =
∑
i,j

aijbij,

so
∂ trace(AB)/∂aij = bij.

Using these, and writing S = (sij),

∂ log |V |/∂vij = (V −1)ij = (Σ)ij = σij (V := Σ−1),

∂ trace(V S)/∂vij = sij.

So

∂ℓ/∂vij =
1

2
n(σij − sij),

which is 0 for all i and j iff Σ = S. This says that S is the MLE for Σ, as
required. //

6. Conditioning and regression
In general, we should always use what we know. In Probability and Statis-

tics, this goes by the technical term of conditioning. This rests ultimately on
the formula P (A|B) := P (A ∩ B)/P (B) of elementary probability (applica-
ble only when P (B) > 0!), and its analogue with sums replaced by integrals
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when densities exist (which they do not in general!). Both these elementary
cases are handled above in our treatment of the bivariate normal distribution
(IV.2, Day 5). The general approach to conditioning is due to Kolmogorov
in 1933, and uses Measure Theory and σ-fields; see e.g. [SP]. We pause to
make the link between conditioning and regression.

Recall that the conditional density of Y given X = x is

fY |X(y|x) := fX,Y (x, y)/
∫
fX,Y (x, y)dy.

Conditional means.
The conditional mean of Y given X = x is

E(Y |X = x),

a function of x called the regression function (of Y on x). So, if we do not
specify the value x, we get E(Y |X). This is random, because X is random
(until we observe its value, x; then we get the regression function of x as
above). As E(Y |X) is random, we can look at its mean and variance.

Recall (SP, Ch. II)

Theorem (Conditional Mean Formula). E[E(Y |X)] = EY .

Interpretation. EY takes the random variable Y , and averages out all the
randomness to give a number, EY .
E(Y |X) takes the random variable Y , and averages out all the randomness
in Y NOT accounted for by knowledge of X.
E[E(Y |X)] then averages out the remaining randomness, which IS accounted
for by knowledge of X, to give EY as above.
Example: Bivariate normal distribution, N(µ1, µ2; σ

2
1, σ

2
2; ρ), or N(µ, σ),

µ = (µ1, µ2)
T , σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
=

(
σ11 σ12
σ12 σ22

)
.

Then

E(Y |X = x) = µ2 + ρ
σ2
σ1

(x− µ1), so E(Y |X) = µ2 + ρ
σ2
σ1

(X − µ1).

So

E[E(Y |X)] = µ2 + ρ
σ2
σ1

(EX − µ1) = µ2 = EY, as EX = µ1.
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As with the bivariate normal, we should keep some concrete instance in
mind as a motivating example, e.g.:
X = incoming score of student [in medical school or university, say], Y =
graduating score;
X = child’s height at 2 years (say), Y = child’s eventual adult height,
or X = mid-parent height, Y = child’s adult height, as in Galton’s study.

Recall also (SP, Ch. II)

Theorem (Conditional Variance Formula).

varY = EXvar(Y |X) + varXE(Y |X).

Interpretation.
varY = total variability in Y,

EXvar(Y |X) = variability in Y not accounted for by knowledge of X,

varXE(Y |X) = variability in Y accounted for by knowledge of X.

Example: the bivariate normal.

Y |X = x is N(µ2 + ρ
σ2
σ1

(x− µ1), σ
2
2(1− ρ2)), varY = σ2

2,

E(Y |X = x) = µ2 + ρ
σ2
σ1

(x− µ1), E(Y |X) = µ2 + ρ
σ2
σ1

(X − µ1),

which has variance (ρσ2/σ1)
2varX = (ρσ2/σ1)

2σ2
1 = ρ2σ2

2;

var(Y |X = x) = σ2
2(1− ρ2), EXvar(Y |X) = σ2

2(1− ρ2).

Corollary. E(Y |X) has the same mean as Y and smaller variance (if any-
thing) than Y .

Proof. From the Conditional Mean Formula, E[E(Y |X)] = EY . Since
var(Y |X) ≥ 0, EXvar(Y |X) ≥ 0, so

varE[Y |X] ≤ varY

from the Conditional Variance Formula. //

This result has important applications in estimation theory. Suppose we
are to estimate a parameter θ, and are considering a statistic X as a pos-
sible estimator (or basis for an estimator) of θ. We would naturally want
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X to contain all the information on θ contained within the entire sample.
What (if anything) does this mean in precise terms? The answer lies in the
concept of sufficiency (‘data reduction’) – one of the most important con-
tributions to statistics of the great English statistician R. A. (Sir Ronald)
Fisher (1880-1962) in 1920. In the language of sufficiency, the Conditional
Variance Formula is seen as (essentially) the Rao-Blackwell Theorem, a key
result in the area (see the index in your favourite Statistics book for more).
Regression.

In the bivariate normal, with X = mid-parent height, Y = child’s height,
E(Y |X = x) is linear in x (regression line). In a more detailed analysis, with
U = father’s height, V = mother’s height, Y = child’s height, one would
expect E(Y |U = u, V = v) to be linear in u and v (regression plane), etc.

In an n-variate normal distributionNn(µ,Σ), suppose thatX = (X1, · · · , Xn)
is partitioned into X1 := (X1, · · · , Xr)

T and X2 := (Xr+1, · · · , Xn)
T . Let the

corresponding partition of the mean vector and the covariance matrix be

µ =

(
µ1

µ2

)
,Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where EXi = µi, Σ11 is the covariance matrix of X1, Σ22 that of X2,
Σ12 = ΣT

21 the covariance matrix of X1 with X2.
We restrict attention, for simplicity, to the non-singular case, where Σ is

positive definite.

Lemma. If Σ is positive definite, so is Σ11.

Proof. xTΣx > 0 as Σ is positive definite. Take x = (x1,0)
T , where x1 has

the same number of components as the order of Σ11 [i.e., in matrix language,
so that the partition of x is conformable with those of µ and σ above]. Then
x1Σ11x1 > 0 for all x1. This says that Σ11 is positive definite. //

Theorem. The conditional distribution of X2 given X1 = x1 is

X2|X1 = x1 ∼ N(µ2 + Σ21Σ
−1
11 (x1 − µ1),Σ22 − Σ21Σ

−1
11 Σ12).

Corollary. The regression of X2 on X1 is linear:

E(X2|X1 = x1) = µ2 + Σ21Σ
−1
11 (x1 − µ1).
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Proof. Recall that AX,BX are independent iff AΣBT = 0, or as Σ is
symmetric, BΣAT = 0. Now

X1 = AX where A = (I,0),

X2−Σ21Σ
−1
11 X1 =

(
−Σ21Σ

−1
11 I

)( X1

X2

)
= BX, where B =

(
−Σ21Σ

−1
11 I

)
.

Now

BΣAT =
(
−Σ21Σ

−1
11 I

)( Σ11 Σ12

Σ21 Σ22

)(
I
0

)
=
(
−Σ21Σ

−1
11 I

)( Σ11

Σ21

)

= −Σ21Σ
−1
11 Σ11 + Σ21 = 0,

so X1 and X2 − Σ21Σ
−1
11 X1 are independent. Since both are linear transfor-

mations of X, which is multinormal, both are multinormal. Also,

E(BX) = BEX =
(
−Σ21Σ

−1
11 I

)( µ1

µ2

)
= µ2 − Σ21Σ

−1
11 µ1.

To calculate the covariance matrix, introduce C := −Σ21Σ
−1
11 , so B = (C I),

and recall ΣT
12 = Σ21, so CT = −Σ−1

11 Σ12:

var(BX) = BσBT =
(
C I

)( Σ11 Σ12

Σ21 Σ22

)(
CT

I

)

=
(
C I

)( Σ11C
T + Σ12

Σ21C
T + Σ22

)
= CΣ11C

T +CΣ12 + Σ21C
T + Σ22

= Σ21Σ
−1
11 Σ11Σ

−1
11 Σ12 − Σ21Σ

−1
11 Σ12 − Σ21Σ

−1
11 Σ12 + Σ22

= Σ22 − Σ21Σ
−1
11 Σ12.

By independence, the conditional distribution of BX given X1 = AX is
the same as its marginal distribution, which by above isN(µ2−Σ21Σ

−1
11 µ1,Σ22−

Σ21Σ
−1
11 Σ12). So givenX1,X2−Σ21Σ

−1
11 X1 isN(µ2−Σ21Σ

−1
11 µ1,Σ22−Σ21Σ

−1
11 Σ12).

To pass from the conditional distribution of X2 −Σ21Σ
−1
11 X1 given X1 to

that of X2 given X1: just add Σ21Σ
−1
11 X1. Then

X2|X1 ∼ N(µ2 + Σ21Σ
−1
11 (X1 − µ1),Σ22 − Σ21Σ

−1
11 Σ12). //

Here Σ1|2 := Σ22 − Σ21Σ
−1
11 Σ12 is called the partial covariance matrix of X2

given X1.
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Elliptical models
The multinormal, or Gaussian, model is wonderfully convenient mathe-

matically. In particular, the property of having linear regression is highly
convenient. However, we note two properties of normal or Gaussian distri-
butions, in any dimension:
(i) they are symmetrical, and so cannot model skewness;
(ii) they have extremely thin tails (so deviations of, say, 3 standard deviations
from the mean are very rare).
But these contradict common observation in finance!
Skew.

Profit and loss are profoundly asymmetrical! Large unexpected profits
are nice; large unexpected losses are lethal. Consequently, a given amount
of profit gives less pleasure than a given amount of loss gives pain. One can
see the same effect in prices falling below a peak once the market has turned
far faster than they increase when the market is rising (so one can detect the
arrow of time from time series of price data).
Tails.

Inspection (EDA) of any financial data set will reveal much fatter tails
than Gaussian. Typically, one sees heavy tails – tails that decay like a power
(as with the Student t-distributions).

There is a third problem, that arises in portfolio management, where we
have a range of assets (balanced, by Markowitzian diversification). The tails
of two different components of a multinormal vector are (asymptotically)
independent. By contrast, the negative tails (downside risk) of assets are
usually highly dependent: in a falling market, everything falls, and the tails
are heavily dependent.

For all these reasons, it is important to seek other models, which retain
as many as possible of the desirable properties of the normal but not the
disadvantages above. Such models exist – the elliptical, or elliptically con-
toured, models. These may be characterised in several ways. An elliptically
contoured distribution in n dimensions with mean vector µ and covariance
matrix Σ of rank k (with Cholesky decomposition Σ = ATA) has a stochastic
representation

X = µ+RATu;

here u is a random vector uniformly distributed over the unit sphere in k
dimensions and R ≥ 0 is a scalar random variable independent of u. Alter-
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natively, X has CF
ψ(t) = eit

Tµϕ(tTΣt)

for some scalar function ϕ. Thus ϕ(x) = e−
1
2
x gives the Gaussian case, and

choosing ϕ to decrease more slowly gives heavier tails, as required. For back-
ground, we refer to e.g. the book [MFE] and the paper [BFK].
Copulas.

Given a random n-vectorX = (X1, . . . , Xn), write F (x) = F (x1, . . . , xn) :=
P (X≤x1, . . . , Xn ≤ xn) for the joint distribution function, Fi(xi) := P (Xi ≤
xi) for the marginal distribution functions. Then by Sklar’s theorem (Abe
SKLAR (1915-) in 1958),

F (x) = C(F1(x1), . . . , Fn(xn))

for some distribution function C(u) = C(u1, . . . , un) on the unit n-cube.
This C is called the copula, as it couples the marginals together to give the
joint distribution. The copula contains all the information on the dependence
structure (vital for financial applications, as above!). For more on this, see
e.g. [MFE] Ch. 5.

7. Generalised linear models (GLMs).
In Regression above, we took as our basic model

y = Aβ + ϵ : Ey = Aβ; yi =
∑
j

aijβj

– our data y (an n-vector) is modelled as a linear transformation (by a known
matrix A, the design matrix, n × p) of a p-vector β of parameters, plus an
error. That is, we work with linear combinations of predictors plus error; in
particular, the mean µ is given by a linear predictor, η. This simple procedure
is surprisingly general and effective, but there are situations where it does not
apply. We turn to these, seeking to use as much as possible of the approach
above.

First, we generalise this by allowing the linear predictor η to be some
(smooth and monotone, so invertible) function g of the mean µ:

η = g(µ),

where g is called the link function, or link. Next, we need to specify the error
structure. This is done by means of exponential families (I.6.4, D2): the yi
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are independent, with densities

f(yi) = exp{ωi(yiθi − b(θi))

ϕ
+ c(y, ϕ)};

here b, c are known functions, ωi are known weights, ϕ is a scale parameter
(known or unknown), and the parameter θi depends on η.

The case where this dependence is given by the identity,

θ = η,

is particularly important; here the link is called canonical.
GLMs were introduced by Nelder and Wedderburn in 1972; our treatment

here follows [BF] Ch. 8. The standard work is
[McN] P. McCULLAGH and J. A. NELDER, Generalised linear models, 2nd
ed., 1989, Chapman and Hall (1st ed. 1983).
They have been extended to hierarchical GLMs (see Ch. VII):
[NLP] J. A. NELDER, Y. LEE and Y. PAWITAN, Generalised linear models
with random effects: unified analysis via H-likelihood. Chapman and Hall,
2006.
Examples.
1. Normal. Here g(µ) = µ, the errors are normal, and the GLM reduces to
the ordinary Linear Model above – as was to be expected!
2. Poisson. For the Poisson distribution P (λ), writing y for the usual k =
0, 1, 2, . . .,

f(y, k) = e−λλy/y! = exp{y log λ− λ− log y!}.
So θ = η = log λ: the canonical link is the logarithm:

η = log λ.

The Poisson distribution is the default option for count data. The logarithm
here explains the use of logs in log-linear models for count data – contingency
tables, etc. (Pearson’s chi-square goodness-of-fit test, 1900). For details, see
e.g. [BF] 8.3 – 8.5.
3. Gamma. The Gamma density Γ(λ, α) (λ, α > 0) has density f(x) =
λαe−λxxα−1/Γ(λ) on (0,∞). The mean is µ = α/λ, and the canonical link
is η = 1/µ. The Gamma is the default option for error structure on (0,∞);
here it is often used with the log-link η = log µ. See e.g. [BF] 8.2.3 for an
application (to athletics times).
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