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So if we interpret convergence in the mean-square sense,
∑
ϕ2
i <∞ is the

necessary and sufficient condition (NASC) for the moving-average represen-
tation of Xt to exist. Since

∑
ϕiϵt−i is (when convergent) stationary (because

(ϵt) is stationary):
if

∑
ϕ2
i <∞, then (Xt) is stationary. The converse is also true, giving:

Theorem (Condition for Stationarity). The following are equivalent:
(i) The parameters ϕ1, · · · , ϕp in the AR(p) model

Xt = ϕ1Xt−1 + · · ·+ ϕpXt−p + ϵt, (ϵt) WN(σ2) (∗)

define a stationary process (Xt);
(ii) The roots of the polynomial

ϕ(λ) := ϕpλ
p + · · ·+ ϕ1λ− 1 = 0

lie outside the unit disc in the complex λ-plane;
(iii) Xt has the moving-average representation

Xt =
∑∞

i=0
ϕiϵt−i

with ∑∞
i=0
ϕ2
i <∞.

Proof. Substituting the moving-average representation into (∗),∑∞
i=0
ϕiϵt−i =

∑p

k=1
ϕk

∑∞
i=0
ψiϵt−k−i + ϵt

=
∑p

k=1
ϕk

∑∞
i=k
ϕi−kϵt−i + ϵt

=
∑∞

i=1
(
∑min(i,p)

k=1
ϕkϕi−k)ϵt−i + ϵt.

Equating coefficients of ϵt−i, we obtain the difference equation

ϕi =
∑p

k=1
ϕkϕi−k (i ≥ p)

(with similar equations for i = 0, 1, · · · , p − 1, which provide starting-values
for the difference equation above). The difference equation, of order p, has
general solution

ϕi =
∑p

k=1
ckλ

i
k,
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where λ1, · · · , λp are the roots of the characteristic polynomial

λp − ϕ1λ
p−1 − · · · − ϕp−1λ− ϕp = 0

(with appropriate modifications in the case of repeated roots, as before).
[Check: if ϕi = λi is a trial solution of the difference equation, λi =

∑p
1ϕkλ

i−k.
Multiply through by λp−i: λp =

∑p
1ϕkλ

p−k.] Now as ϕi =
∑p

1ckλ
i
k and

|λik| → ∞, = 1 or → 0 as i → ∞ according as |λk| > 1, = 1 or < 1,∑
ϕ2
i < ∞ iff each |λk| < 1, i.e. each root of λp − ϕ1λ

p−1 − · · · − ϕp = 0 is
inside the unit disk, i.e. each root of

ϕ(λ) = ϕpλ
p + ϕp−1λ

p−1 + · · ·+ ϕ1λ− 1 = 0

is outside the unit disk. This is all that remained to be proved. //

In the stationary case, we thus have

γt = cov(Xt, Xt+τ ) = σ2
∑∞

i=0
ϕiϕi+τ ,

with
∑
ϕ2
i <∞ and ϕi =

∑p
k=1ckλ

i
k, |λi| < 1. If λ1 (say) is the root of largest

modulus, ϕi ∼ c1λ
i
1 for large i, and ϕiϕi+τ ∼ c21λ

τ+2i
1 . So for large τ , we can

expect
γτ ∼ σ2

∑
c21λ

τ+2i
1 ∼ const.λτ1, ρτ ∼ γτ/γ0 ∼ λτ1.

Thus for a stationary AR(p) model, we expect that the autocorrelation de-
creases geometrically to zero for large lag τ (the decay rate being the char-
acteristic root of largest modulus).
Note. For AR(1), the autocorrelation function is geometrically decreasing:
ρτ = ρτ . This holds exactly, even for small τ . Since the sample autocorrela-
tion (correlogram) rτ approximates the population autocorrelation ρτ = ρτ :
for AR(1),

rτ ∼ ρτ :

the sample ACF is approximately geometrically decreasing (i.e., geometri-
cally decreasing plus sampling error), even for small lags τ . We can look for
this pattern at the beginning of a plot of the ACF, and this is the signature
of an AR(1) process. For AR(p), p > 1, matters are not so simple. The
approximation above only holds for large τ , by which time rτ will be small
(it approximates ρτ , which tends to zero as τ increases), and the pattern
of geometric decrease will tend to be swamped by sampling error. Conse-
quently, it is much harder to interpret the correlogram of an AR(p) for p > 1
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than for an AR(1).
By contrast, the moving average – MA(q) – models considered below

have autocorrelations that cut off - they are zero beyond lag q, apart from
sampling error. This is the signature of the ACF of an MA(q), and is easy
to interpret; an AR(1) signature is easy to interpret; that of an AR(p) for
p > 1 is (usually) not.

6. Moving average processes, MA(q).
Suppose we have a system in which new information arrives at regular

intervals, and new information affects the system’s response for a limited pe-
riod. The new information might be economic, financial etc., and the system
might involve the price of some commodity, for example.

The simplest possible model for the new information process, or inno-
vation process, is white noise, WN(σ2), so we assume this. The simplest
possible model for a response with such a limited time-influence is

Xt = ϵt +
∑q

j=1
θjϵt−j, (ϵt) WN(σ2).

This is called a moving-average process or order q, MA(q).
In terms of the lag operator B, ϵt−j = Bjϵt, so if

θ(B) := 1 +
∑q

j=1
θjB

j,

we can write
Xt = θ(B)ϵt.

Autocovariance. Since Eϵt = 0, EXt = 0 also. So writing θ0 = 1,

γk = cov(Xt, Xt+k) = E[XtXt+k] = E[
∑q

i=0
θiϵt−i

∑q

j=0
θjϵt−k−j]

=
q∑

i,j=0

θiθjE[ϵt−iϵt−k−j].

Now E[.] = 0 unless i = j + k, when it is σ2. It suffices to take k ≥ 0 (as
γ(−k) = γ(k)). If also k ≤ q, we can take j = i− k, and then the limits on
j are 0 ≤ j ≤ q − k, as 0 ≤ i ≤ q. If however k > q, there are no non-zero
terms as there are no i = k + j with 0 ≤ i, j ≤ q. So

γ(k) =

{
σ2∑q−k

j=0θjθj+k, if k = 0, 1, · · · , q,
0 if k > q,

3



γ0 = σ2
∑q

j=0
θ2j ,

so the autocorrelation is

ρk =

{∑q−k
i=0 θiθi+k/

∑q
i=0θ

2
i if k = 0, 1, · · · , q,

0 if k > q.

This sudden cut-off of the autocorrelation after lag k = q is the signature of
an MA(q) process.
First-order case: MA(1).

The model equation is

Xt = ϵt + θϵt−1.

By above,

ρ0 = 1, ρ1 = θ/(1 + θ2), ρk = 0 (k ≥ 2).

In terms of the lag (backward shift) operator B:

Xt = (1 + θB)ϵt.

Hence formally

ϵt = (1 + θB)−1Xt =
∑∞

0
(−θ)kBkXt = Xt +

∑∞
1
(−θ)kXt−k :

Xt = ϵt −
∑∞

1
(−θ)kXt−k.

This is an infinite-order autoregressive representation of (Xt). For (mean-
square) convergence on RHS, as in the AR theory above, we need

|θ| < 1.

The MA(1) model is then said to be invertible: the passage from the MA(1)
representation using (1+ θB) to the AR(∞) representation using (1+ θB)−1

is called inversion.
Note. If we replace θ by 1/θ, ρ1 goes from θ/(1 + θ2) to

(1/θ)/[1 + (1/θ)2] = θ/(1 + θ2)

– the same as before. So for θ ̸= 1, two different MA(1) processes have
the same ACF: we cannot hope to identify the process from the ACF, or its

4



sample version, the correlogram. However, for |θ| ̸= 1, exactly one of these
processes is invertible. So if we restrict attention to invertible MA processes,
identifiability is restored in general (|θ| ̸= 1), but not in the exceptional case
|θ| = 1, θ ̸= 1.
General case: MA(q). As above,

Xt = ϵt +
∑q

j=1
θjϵt−j = θ(B)ϵt, where θ(λ) = 1 +

∑q

j=1
θjλ

j.

So formally, if we invert this we obtain

ϵt = θ(B)−1Xt,

and as θ(λ) = 1 + θ1λ+ · · ·, 1/θ(λ) = 1 + c.λ+ · · ·. So

Xt = ϕ1Xt−1 + · · ·+ ϕiXt−i + · · ·+ ϵt,

for some constants ϕi. This expresses the new value Xt at the current time
t as a sum of two components:
(i) an (infinite) linear combination of previous values Xt−i, and
(ii) the new white-noise term ϵt, thought of as the innovation at time t. It is
thus plausible that it should be possible to forecast future values of such a
process given knowledge of its history.

Proceeding as in the proof of the Condition for Stationarity in Section 4,
we find that ϕi is of the form

ϕi =
∑q

k=1
ckλ

i
k,

where the λk are the roots of the polynomial

λp + θ1λ
p−1 + · · ·+ θp = 0.

For ϕi → 0 as i → ∞ – that is, for the influence of the remote past of the
process to damp out to zero – we need all |λi| < 1. That is, all roots of
the above polynomial (which is θ(1/λ)) should lie inside the unit disc in the
complex λ-plane. Equivalently, all roots of θ(λ) = 0 lie outside the unit disc.
Then as before,

∑
ϕ2
i <∞ and the series

∑
ϕiXt−i converges in mean square.

To summarise, we have:

Theorem (Condition for Invertibility). For the MA(q) model

Xt = θ(B)ϵt, (ϵt) WN
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to be invertible as
ϵt = θ(B)−1Xt,

it is necessary and sufficient that all roots λi of the polynomial equation

λp + θ1λ
p−1 + · · ·+ θp = 0

should lie outside the unit disc. Then

ϵt =
∑∞

1
ϕiXt−i

with
∑
ϕ2
i <∞ and the series convergent in mean square.

Note. 1. The Condition for Stationarity for AR(p) processes and the Con-
dition for Invertibility for MA(q) processes exhibit a duality, in which the
roles of Xt and ϵt are interchanged.
2. We shall confine ourselves in what follows to the invertible case. Then the
parameters θj are uniquely determined by the autocorrelation function ρτ .
3. In the MA(1) case, the above characteristic equation is

λ+ θ1 = 0,

with root λ = −θ1. For invertibility, we need |θ1| < 1, as before. Invertibility
avoids the ambiguity of both θ1 and 1/θ1 giving the same ACF

ρ0 = 1, ρ1 = θ1/(1 + θ21), ρk = 0 (k ≥ 2).

7. Autoregressive moving average processes, ARMA(p,q).
We can combine the AR(p) and MA(q) models as follows:

Xt =
∑p

1
ϕiXt−i + ϵt +

∑q

1
θiϵt−i, (ϵt) WN(σ2)

or
ϕ(B)Xt = θ(B)ϵt,

where

ϕ(λ) = 1− ϕ1λ− · · · − ϕpλ
p, θ(λ) = 1 + θ1λ+ · · ·+ θqλ

q.

We shall assume that the roots of ϕ(λ and θ(λ) all lie outside the unit disc.
Then, as in the Conditions for Stationarity and Invertibility, the process (Xt)
is both stationary and invertible, and

Xt = (ϕ(B))−1θ(B)ϵt.
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Now θ(λ)/ϕ(λ) is a rational function (ratio of polynomials). We shall assume
that θ(λ), ϕ(λ) have no common factors. For if they do:
(i) the common factors can be cancelled from (ϕ(B))−1θ(B), leaving an equiv-
alent model but with fewer parameters - so better;
(ii) we have no hope of identifying parameters in the factors thus cancelled.
Thus the model is non-identifiable. So to get an identifiable model, we need
to perform all possible cancellations. We assume this done in what follows.
Note. Generally in statistics, we try to work with identifiable models. These
are the ones in which the task of estimating parameters from the data is
possible in principle. Non-identifiable models are degenerate, or at least
problematic.

Of course: ARMA(p, 0) ≡ AR(p), ARMA(0, q) ≡MA(q).
ARMA(1,1).

Xt = ϕXt−1 + ϵt + θϵt−1 : (1− ϕB)Xt = (1 + θB)ϵt.

Condition for Stationarity: |ϕ| < 1 (assumed).
Condition for Invertibility: |θ| < 1 (assumed).

Xt = (1− ϕB)−1(1 + θB)ϵt = (1 + θB)(
∑∞

0
ϕiBi)ϵt

= ϵt +
∑∞

1
ϕiBiϵt + θ

∑∞
0
ϕiBi+1ϵt = ϵt + (θ + ϕ)

∑∞
1
ϕi−1Biϵt :

Xt = ϵt + (ϕ+ θ)
∑∞

i=1
ϕi−1ϵt−i.

Variance: lag τ = 0. Square and take expectations. The ϵs are uncorrelated
with variance σ2, so

γ0 = varXt = E[X2
t ] = σ2 + (ϕ+ θ)2

∑∞
1
ϕ2(i−1)σ2

= σ2 +
(ϕ+ θ)2σ2

(1− ϕ2)
= σ2(1− ϕ2 + ϕ2 + 2ϕθ + θ2)/(1− ϕ2) :

γ0 = σ2(1 + 2ϕθ + θ2)/(1− ϕ2).

Covariance: lag τ ≥ 1.

Xt−τ = ϵt−τ + (ϕ+ θ)
∑∞

j=1
ϕj−1ϵt−τ−j.

Multiply the series for Xt and Xt−τ and take expectations:

γτ = cov(Xt, Xt−τ ) = E[XtXt−τ ],
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which is

E{[ϵt + (ϕ+ θ)
∑∞

i=1
ϕi−1ϵt−i].[ϵt−τ + (ϕ+ θ)

∑∞
j=1
ϕj−1ϵt−τ−j]}.

The ϵt-term in the first [.] gives no contribution. The i-term in the first [.]
for i = τ and the ϵt−τ in the second [.] give (ϕ + θ)ϕτ−1σ2. The product
of the i term in the first sum and the j term in the second contributes for
i = τ + j; for j ≥ 1 it gives (ϕ+ θ)2ϕτ+j−1.ϕj−1.σ2. So

γτ = (ϕ+ θ)ϕτ−1σ2 + (ϕ+ θ)2ϕτσ2
∑∞

j=1
ϕ2(j−1).

The geometric series is 1/(1− ϕ2) as before, so for τ ≥ 1

γτ =
(ϕ+ θ)ϕτ−1σ2

(1− ϕ2)
.[1−ϕ2+ϕ(ϕ+θ)] : γτ = σ2(ϕ+θ)(1+ϕθ)ϕτ−1/(1−ϕ2).

Autocorrelation. The autocorrelation ρτ := γτ/γ0 is thus

ρ0 = 1, ρτ =
(ϕ+ θ)(1 + ϕθ)

(1 + 2ϕθ + θ2)
.ϕτ−1 (τ ≥ 1).

Note that

ρ1 = (ϕ+ θ)(1 + ϕθ)/(1 + 2ϕθ + θ2), ρτ/ρτ−1 = ϕ (τ ≥ 1) :

ρ0 = 1 always, ρ1 is as above, and then ρτ decreases geometrically with com-
mon ratio ϕ. This is the signature of an AR(1, 1) process: if the correlogram
looks geometric after the r1 term, to within sampling error, then an AR(1, 1)
model is suggested.

8. ARMA modelling; The general linear process

The model equation ϕ(B)Xt = θ(B)ϵt for an ARMA(p, q) process may
sometimes have a direct interpretation in terms of the mechanism generating
the model. Usually, however, ARMA models are tried and fitted to the
data empirically. Their principal use is that ARMA(p, q) models are so
flexible: a wide range of different examples may be satisfactorily fitted by
an ARMA model with small values of p and q, so with a small number
p+ q of parameters. This ability to use a small number of parameters is an
advantage, by the Principle of Parsimony. The drawback is that the ARMA
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model may not correspond well with the actual data-generating mechanism,
and so the p + q parameters ϕi, θj may lack any direct interpretation – or
indeed, any basis in reality. An alternative approach is to try to build a
model whose structure reflects the actual data-generating mechanism. This
leads to structural time-series models (Harvey [H], 5.3), state-space models
and the Kalman filter ([H], Ch. 4); see V.11 D9 below.
Interpretation of parameters.

Recall the ARMA(p, q) model

Xt =
∑p

i=1
ϕiXt−i + ϵt +

∑q

j=1
θjϵt−j, (ϵt) WN(σ2). (∗)

Think, for example, of Xt as representing the value at time t of some partic-
ular economic/financial/business variable – the current price of a particular
company’s stock, or of some particular commodity, say. Think of ϵt as rep-
resenting the current value of some general indicator of the overall state of
the economy. We are trying to predict the value of the particular variable
Xt, given information of two kinds:
(i) on the past values of the X-process (particular information),
(ii) on the past and present values of the ϵ-process (general information).
Then (relatively) large values of a coefficient ϕi, or θj, indicate that this vari-
able – particular information at lag i, or general information at lag j – is
important in determining the variable Xt of interest. By contrast, a (rela-
tively) low value suggests that we may be able to discard this variable.

Another illustration, from geographical or climatic data rather than an
economic/financial setting, is in modelling of river flow, or depth. Here Xt

might be the depth of a particular river at time t; ϵt might be some general
indicator of recent rainfall in the area – e.g., precipitation at some weather
station in the river’s watershed.
The General Linear Process. An infinite-order MA process

Xt − µ =
∑∞

i=0
ϕiϵt−i,

∑
ϕ2
i <∞, (ϵt) WN

is called a general linear process. Both AR and MA processes are special
cases, as we have seen. But since there are infinitely many parameters ϕi

in the above, the model is only useful in practice if it reduces to a finite-
dimensional model such as an AR(p),MA(q) or ARMA(p, q).

However, the general linear process is important theoretically, as we now
explain. Consider a stationary process (Xt) (the general linear process is
stationary), and write σ2 for the variance of Xt (rather than ϵt, as before).
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Then σ2 measures the variability in Xt. Suppose now that we are given the
values of Xs up to Xt−q. This knowledge makes Xt less variable, so

σ2
q := var(Xt| · · · , Xt−q−2, Xt−q−1, Xt−q) ≤ σ2.

As we increase q, the information given decreases (recedes further into the
past), so Xt given this information becomes more variable: σ2

q increases with
q. So

0 ≤ σ2
q ↑ σ2

∞ ≤ σ2 (q → ∞).

One possibility is that σq = 0 for all q, and then σ∞ = 0 also. Now if
a random variable has zero variance, it is constant (with probability one) –
i.e., non-random or deterministic. The case σq ≡ 0 does occur, in cases such
as

Xt = a cos(ωt+ b),

where a, b, ω may be random variables, but do not depend on time. Then
three values of Xt are enough to find the three values a, b, ω, and then all
future values of Xt are completely determined. In this case, each Xt is a
random variable, but (Xt) as a stochastic process is clearly degenerate: there
is no ‘new randomness’, and the dependence of randomness on time – the
essence of a stochastic process (and even more, of a time series!) – is trivial.
Such a process is called singular or purely deterministic.

9. Wold decomposition

At the other extreme to the deterministic case, we may have

σq ↑ σ∞ = σ (q → ∞).

Then as information given recedes into the past, its influence dies away to
nothing – as it should. Such a process is called purely nondeterministic.

We quote the

Theorem (Wold Decomposition Theorem: Wold (1938)). A (strictly)
stationary stochastic process (Xt) possesses a unique decomposition

Xt = Yt + Zt,

where
(i) Yt is purely deterministic,
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(ii) Zt is purely nondeterministic,
(iii) Yt, Zt are uncorrelated,
(iv) Zt is a general linear process,

Zt =
∑

ϕiϵt−i,

with the ϵt uncorrelated.

This result is due to the Swedish statistician Hermann Wold (1908-1992)
in 1938. It shows that infinite moving-average representations

∑
ϕiϵt−i, far

from being special, are general enough to handle the stationary case apart
from degeneracies such as purely deterministic processes. For proof, see e.g.
J. L. DOOB (1953): Stochastic processes, Wiley (XII.4, Th. 4.2).

Corollary. If (Xt) has no purely deterministic component – so

Xt =
∑∞

i=0
ψiϵt−i,

∑
ψ2
i <∞, (ϵt) WN(σ2) −−

then
(i) γk := cov(Xt, Xt+k) = σ2∑∞

i=0ψiψi+k,
(ii) γk → 0, ρk := corr(Xt, Xt+k) → 0 (k → ∞): the autocovariance and
autocorrelation tend to zero as the lag k increases.

Proof.

γk = cov(Xt, Xt+k) = E(Xt, Xt+k) = E[(
∑∞

i=0
ψiϵt−i)(

∑∞
j=0
ψjϵt−k−j)]

=
∑∑

i,j
ψiψjE(ϵt−iϵt−k−j).

Here E(.) = 0 unless i = j + k, when it is σ2, so

γk = σ2
∑

j=0
ψjψj+k,

proving (i). For (ii), use the Cauchy-Schwarz inequality:

|γk| = σ2|
∑∞

i=0
ψiψi+k| ≤ (

∑∞
i=0
ψ2
i )

1/2
∑∞

i=0
ψ2
i+k)

1/2 → 0 (k → ∞),

as
∑
ψ2
i <∞, so

∑∞
i=kψ

2
i is the tail of a convergent series. //
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More general models. We mention a few generalisations here.
1. ARIMA(p, d, q). The ‘I’ here stands for ‘integrated’; the d for how many
times. Differencing d times (e.g. to give stationarity) gives ARMA(p, q).
2. SARIMA. Here ‘S’ is for ‘seasonal’: many economic time series have a
seasonal effect (e.g., agriculture, building, tourism).
Spectral methods; frequency domain.

The key theoretical result in the prediction theory of stationary stochastic
processes with discrete time is Szegö’s theorem (Gabor SZEGÖ (1895-1985)
in 1915), according to which the deterministic component in the Wold de-
composition is absent (the ‘nice case’) iff∫ 2π

0
logw(θ)dθ > −∞,

where w is the density of the spectral measure µ of the process (the logarithm
of the density enters here in connection with the concept of entropy, which
arises in Statistical Mechanics and Thermodynamics).

In contrast to the time-domain methods above, spectral methods belong
to the frequency domain.
Wavelets.

One can combine time domain and frequency domain (‘time-frequency
analysis’) by using wavelets (1980s on)1; we must omit details.

10. ARCH and GARCH; Econometrics ([BF, 9.4.1, 220-222)
There are a number of stylised facts in mathematical finance. E.g.:

(i). Financial data show skewness. This is a result of the asymmetry between
profit and loss (large losses are lethal!)
(ii). Financial data have much fatter tails than the normal/Gaussian (I.5).
(iii) Financial data show volatility clustering. This is a result of the economic
and financial environment, which is extremely complex, and which moves
between good times/booms/upswings and bad times/slumps/downswings.
Typically, the market ‘gets stuck’, staying in its current state for longer than
is objectively justified, and then over-correcting. As investors are highly
sensitive to losses (see (i) above), downturns cause widespread nervousness,
which is reflected in higher volatility. The upshot is that good times are as-
sociated with periods of growth but low volatility; downturns spark extended
periods of high volatility (as well as stagnation, or shrinkage, of the economy).

1Wavelets are a speciality of the Statistics Section here at Imperial College
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