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ARCH and GARCH.

We turn to models that can incorporate such features (volatility cluster-
ing, etc.).

The model equations are (with Zt ind. N(0, 1))

Xt = σtZt, σ2
t = α0 +

p∑
1

αiX
2
i−1, (ARCH(p))

while in GARCH(p, q) the σ2
t term becomes

σ2
t = α0 +

p∑
1

αiX
2
i−1 +

q∑
1

βjX
2
t−j. (ARCH(p))

The names stand for (generalised) autoregressive conditionally heteroscedas-
tic (= variable variance). These are widely used in Econometrics, to model
volatility clustering – the common tendency for periods of high volatility, or
variability, to cluster together in time. See e.g. Harvey 8.3, [BF] 9.4, [BFK].
Integrated processes.

One standard technique used to reduce non-stationary processes to the
stationary case is to difference them repeatedly (one differencing operation
replaces Xt by Xt −Xt−1). If the series of dth differences in stationary but
that of (d− 1)th differences is not, the original series is said to be integrated
of order d; one writes (Xt) ∼ I(d).
Co-integration.

If (Xt) ∼ I(d), we say that (Xt) is cointegrated with cointegration vector
α if αTXt) is (integrated of) order less than d.

A simple example arises in random walks. If Xn =
∑n

i=1 ξi with ξi
iid random variables, Yn = Xn + ϵn is a noisy observation of Xn, then
(X, Y ) = (Xn, Yn) is cointegrated of order 1, with coint. vector (−1, 1)T .

Cointegrated series are series that move together, and commonly occur in
economics. These concepts arose in econometrics, in the work of R. F. EN-
GLE (1942-) and C. W. J. (Sir Clive) GRANGER (1934-2009) in 1987. Engle
and Granger gave (in 1991) an illustrative example – the price of tomatoes
in North Carolina and South Carolina. These states are close enough for a
significant price differential between the two to encourage sellers to transfer
tomatoes to the state with currently higher prices to cash in; this movement
would increase supply there and reduce it in the other state, so supply and
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demand would move the prices towards each other.
Engle and Granger received the Nobel Prize in Ecomomics in 2003. The

citation included the following: ”Most macroecomomic time series follow a
stochastic trend, so that a temporary disturbance in, say, GDP has a long-
lasting effect. These time-series are called non-stationary; they differ from
stationary series which do not grow over time, but fluctuate around a given
value. Clive Granger demonstrated that the statistical methods used for sta-
tionary time series could yield wholly misleading results when applied to the
analysis of nonstationary data. His significant discovery was that specific
combinations of nonstationary time series may exhibit stationarity, thereby
allowing for correct statistical inference. Granger called this phenomenon
cointegration. He developed methods that have become invaluable in sys-
tems where short-run dynamics are affected by large random disturbances
and long-run dynamics are restricted to economic equilibrium relationships.
Examples include the relations between wealth and consumption, exchange
rates and price levels, and short- and long-term interest rates.”
Spurious regression.

Standard least-squares method work perfectly well if they are applied to
stationary time series. But if they are applied to non-stationary time series,
they can lead to spurious or nonsensical results. One can give examples of
two time series that clearly have nothing to do with each other, because they
come from quite unrelated contexts, but nevertheless have a high value of
R2. This would normally suggest that a correspondingly high propertion
of the variability in one is accounted for by variability in the other – while
in fact none of the variability is accounted for. This is the phenomenon of
spurious regression, first identified by G. U. YULE (1871-1851) in 1927, and
later studied by Granger and Newbold in 1974. We can largely avoid such
pitfalls by restricting attention to stationary time series, as above.

From Granger’s obituary (The Times, 1.6.2009): ”Following Granger’s
arrival at UCSD in La Jolla, he began the work with his colleague Robert F.
Engle for which he is most famous, and for which they received the Bank of
Sweden Nobel Memorial Prize in Economic Sciences in 2003. They developed
in 1987 the concept of cointegration. Cointegrated series are series that tend
to move together, and commonly occur in economics. Engle and Granger
gave the example of the price of tomatoes in North and South Carolina ....
Cointegration may be used to reduce non-stationary situations to stationary
ones, which are much easier to handle statistically and so to make predictions
for. This is a matter of great economic importance, as most macroeconomic
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time series are non-stationary, so temporary disturbances in, say, GDP may
have a long-lasting effect, and so a permanent economic cost. The Engle-
Granger approach helps to separate out short-term effects, which are random
and unpredictable, from long-term effects, which reflect the underlying eco-
nomics. This is invaluable for macroeconomic policy formulation, on matters
such as interest rates, exchange rates, and the relationship between incomes
and consumption.”
Endogenous and exogenous variables.

The term ‘endogenous’ means ‘generated within’. TheARCH andGARCH
models above show how variable variance (or volatility) can arise in such a
way. By contrast, ‘exogenous’ means ‘generated outside’. Exogenous vari-
ables might be the effect in a national economy of international factors, or
of the national economy on a specific firm or industrial sector, for example.
Often, one has a vector autoregressive (VAR) model, where the vector of
variables is partitioned into two components, representing the endogenous
and exogenous variables. For monograph treatments in the econometric set-
ting, see e.g. [G], [GM].

11. State-space models and the Kalman filter
State-space models originate in Control Engineering. This field goes back

to the governor on a steam engine (James WATT (1736-1819) in 1788): to
prevent a locomotive going too fast, the governor (a rotating device mounted
on top of the engine) rose under centrifugal force as the speed increased, thus
operating a valve to reduce the steam entering the cylinders. This was an
early form of feedback control.

The Kalman filter (Rudolf KALMAN (1930-) in 1960) was a device for
online (or real-time) control, suitable for use with linear systems, quadratic
loss and Gaussian errors (LQG) (the term filter is used because one ‘filters
out’ the noise from the signal to reveal the best estimate of the state). This
appeared just when it was needed, for online control of manned spacecraft
during the 60s. We shall not develop the control aspects here; see e.g.
M. H. A. DAVIS, Linear estimation and stochastic control, Chapman & Hall,
1977,
M. H. A. DAVIS & R. B. VINTER, Stochastic modelling and control, Chap-
man & Hall, 1985.
But the power of the method even without control can be seen in applications
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such as to mortar-locating radar1. We follow Hannan [H] III.8 (cf. [BD1] Ch.
12, [BD2] Ch. 8).

The Kalman filter has been extensively applied in Time Series, financial
and otherwise. We cited Harvey’s Time series models in D0; see also
A. C. HARVEY, Forecasting, structural time series models and the Kalman
filter, CUP, 1991;
C. WELLS, The Kalman filter in finance, Springer, 1996;
J. DURBIN & S. KOOPMAN, Time series analysis by state-space methods,
OUP, 2001.

With the engineering example in mind for definiteness, suppose that the
state of the system at time n is represented by some p-vector x(n). Although
the state x is what we are interested in, we cannot observe it directly; what
we can observe is a signal, or output y, or y(n) at time n, a q-vector. The
dynamics are represented by the following two equations, the state equation
(SE) and the observation equation (OE):

x(n) = Φ(n− 1)x(n− 1) + ϵ(n− 1), (SE)

y(n) = H(n)x(n) + η(n). (OE)

Here Φ(.) is a p×p matrix, H(.) a q×q matrix, both known. The errors ϵ(.),
η(.) are p- and q-vectors respectively, with means 0; the errors at different
times are all uncorrelated (= independent, if the errors are Gaussian, as we
may assume here); the covariance matrices are known matrices

cov(ϵ(n)) = Q(n), cov(η(n)) = R(n), cov(ϵ(n), η(n)) = S(n),

In the motivating trajectory example, Φ(.) comes from the dynamics of the
vehicle being tracked, H(.) from the properties of the tracking equipment.

We use the terminology of Hilbert space, which turns out to be the nat-
ural one for Time Series; for background, see e.g. Hannan [H], Brockwell &
Davis [BD1], [BD2] or my survey
NHB, Szegö’s theorem and its probabilistic descendants, Probability Surveys
9 (2012), 287-324 (and its multi-dimensional sequel, ibid. 325-339).
Hilbert space can be thought of as ”Euclidean space of infinitely many di-
mensions” (though here we have finitely many finite-dimensional vectors, so
things are in fact Euclidean). As in Euclidean space, one has a length (or
norm), an inner product (generalising the ordinary dot product of vectors),

1Used in, e.g., the Siege of Sarajevo, 1992-96.

4



Pythagoras’ theorem holds, and one can use projections (including drawing
pictures of them), and think geometrically. We call subspaces A, B orthogo-
nal if any a ∈ A and b ∈ B are orthogonal vectors, i.e. (a, b) = 0.

In this Hilbert-space setting, the best linear predictor given some infor-
mation is the projection onto the (vector) subspace spanned by the vectors
given. We need two facts here; see e.g. Rao [R], 1.c4(vi), (vii), p.47-8. The
first is as in IV.6 D6; the second is the Bayes linear estimator of VII.7.7 D12.
(P1). The projection onto the space spanned by two orthogonal subspaces is
the sum of the projections onto each of them separately.
(P2). The projection of x onto the space spanned by z is

x̂ = E[xz∗](E[zz∗])−1z,

where (.)−1 is the matrix inverse when this exists (which it will in our case),
or a generalised inverse if it does not, and A∗ denotes the transposed com-
plex conjugate of a matrix A (complex Hilbert spaces are mathematically
preferable to real ones and no harder, hence A∗ for AT even for real A).

We write Hn for the Hilbert space spanned by the errors η(j) (j ≤ n),
ϵ(k) (k ≤ n − 1), together with x(0), the initial state, Kn for the Hilbert
space spanned by the signals y(0), . . . , y(n). From (SE), (OE), Mn ⊂ Hn.
We write a ⊥ B to mean that vector a is orthogonal to (uncorrelated with, so
independent of) every vector b ∈ B, x̂(n+m|n) for the best linear predictor
(projection) of x(n+m) on the space Mn spanned by y(k), k ≤ n.

Theorem (Kalman Filter). (i) For m > 1,

x̂(n+m|n) = Φ(n+m− 1)x̂(n+m− 1|n).

(ii)
x̂(n+ 1|n) = Ψ(n)x̂(n|n− 1) +K(n)y(n),

where
Ψ(n) := Φ(n)−K(n)H(n),

K(n) := {Φ(n)Σ(n)H(n)T + S(n)}{H(n)Σ(n)H(n)T +R(n)}−1,

and Σ(n) is defined recursively by

Σ(n+1) := Φ(n)Σ(n)Φ(n)T +Q(n)−K(n){H(n)Σ(n)H(n)T +R(n)}K(n)∗.

Proof. Mn−1 ⊂ Mn, and Mn = Mn−1 ⊕ Vn, where Vn is the orthogonal
complement of Mn−1 in Mn. We have η(n) ⊥ Mn−1 (since the errors are
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all orthogonal). So the part of y(n) that depends on times k ≤ n− 1 is thus
H(n)x̂(n|n− 1). So writing Π(.|V ) for projection onto a subspace V ,

Π(y(n)|Mn−1) = H(n)x̂(n|n− 1).

Thus Vn is spanned by

I(n) := y(n)−H(n)x̂(n|n− 1),

the innovation at time n (Hannan uses z(n) for this (‘z after x and y’), but
the suggestive name innovation and notation I(n) is more usual now). So

I(n) = η(n) +H(n){x(n)− x̂(n|n− 1)}. (I)

Projecting x(n+ 1) onto Mn = Mn−1 ⊕ Vn and using (P1),

x̂(n+ 1|n) = Φ(n)x̂(n|n− 1) + u(n), u(n) := Π(x(n+ 1)|Vn). (∗)

By (P2),
u(n) = E[x(n+ 1)I(n)∗][E(I(n)I(n)∗)]−1I(n).

Write
Σ(n) := E[(x(n)− x̂(n|n− 1))(x(n)− x̂(n|n− 1))T ]

for the covariance matrix of x(n)−x̂(n|n−1). Then as R(n) is the covariance
matrix of η(n) and x(n) − x(n|n − 1) is orthogonal to (independent of) the
error η(n) in y(n), (I) gives

E[I(n)I(n)∗] = H(n)Σ(n)H(n)T +R(n).

Similarly,
E[x(n+ 1)I(n)∗] = Φ(n)Σ(n)H(n)T .

Combining, and using the definition ofK(n) in the statement of the Theorem,

u(n) = K(n)I(n).

So

x̂(n+ 1|n) = Φ(n)x̂(n|n− 1) +K(n)I(n)

= {Φ(n)−K(n)H(n)}x̂(n|n− 1) +K(n){I(n) +H(n)x̂(n|n− 1)}.

From the definitions of Ψ(n) in the Theorem and I(n) above, this says

x̂(n+ 1|n) = Ψ(n)x̂(n|n− 1) +K(n)y(n),

giving (ii); (i) is similar. For the Kalman recursion for Σ(n), see the handout
on the course website, or the books cited.
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VI. NON-PARAMETRICS

1. Empiricals; the Glivenko-Cantelli theorem
The first thing to note about Parametric Statistics is that the parametric

model we choose will only ever be approximately right at best. We recall
Box’s Dictum (the English statistician George E. P. BOX (1919 –)): al mod-
els are wrong – some models are useful. For example: much of Statistics uses
a normal model in one form or other. But no real population will ever be
exactly normal. And even if it were, when we sampled from it, we would
destroy normality, e.g. by the need to round data to record it; rounded data
is necessarily rational, but a normal distribution takes irrational values a.s.

So we avoid choosing a parametric model, and ask what can be done with-
out it. We sample from an unknown population distribution F . One impor-
tant tool is the empirical (distribution function) Fn of the sample X1, . . . , Xn.
This is the (random!) probability distribution with mass 1/n at each of the
data points Xi. Writing δc for the Dirac distribution at c – the probability
measure with mass 1 at c, or distribution function of the constant c –

Fn :=
1

n

n∑
1

δXi
.

The next result is sometimes called the Fundamental Theorem of Statistics.
It says that, in the limit, we can recover the population distribution from
the sample: the sample determines the population in the limit. It is due to
V. I. GLIVENKO (1897-1940) and F. P. CANTELLI (1906-1985), both in
1933, and is a uniform version of Kolmogorov’s Strong Law of Large Num-
bers (SLLN, or just LLN), also of 1933.

Theorem (Glivenko-Cantelli Theorem, 1933).

sup
x

|Fn(x)− F (x)| → 0 (n → ∞) a.s.

Proof. Think of obtaining a value ≤ x as Bernoulli trials, with parameter (=
success probability) p := P (X ≤ x) = F (x). So by SLLN, for each fixed x,

Fn(x) → F (x) a.s.,

as Fn(x) is the proportion of successes. Now fix a finite partition −∞ =
x1 < x2 < . . . < xm = +∞. By monotonicity of F and Fn,

sup
x

|Fn(x)− F (x)| ≤ max
k

|Fn(xk)− F (xk)|+max
k

|F (xk+1 − F (xk)|.
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Letting n → ∞ and refining the partition indefinitely, we get

lim supn sup
x

|Fn(x)− F (x)| ≤ sup
x

∆F (x) a.s.,

where ∆F (x) denotes the jump of F (if any – there are at most countably
many jumps!) at x. This proves the result when F is continuous.

In the general case, we use the Probability Integral Transformation (PIT,
IS, I). Let U1, . . . , Un . . . be iid uniforms, Un ∼ U(0, 1). Let Yn := g(Un),
where g(t) := sup{x : F (x) < t}. By PIT, Yn ≤ x iff Un ≤ F (x), so the Yn

are iid with law F , like the Xn, so wlog take Yn = Xn. Writing Gn for the
empiricals of the Un,

Fn = Gn(F ).

Writing A for the range (set of values) of F ,

sup
x

|Fn(x)− F (x)| = sup
t∈A

|Gn(t)− t| ≤ sup
[0,1]

|Gn(t)− t|,→ 0 a.s.,

by the result (proved above) for the continuous case. //

If F is continuous, then the argument above shows that

∆n := sup
x

|Fn(x)− F (x)|

is independent of F , in which case we may take F = U(0, 1), and then

∆n = sup
t∈(0,1)

|Fn(t)− t|.

Here ∆n is theKolmogorov-Smirnov (KS) statistic, which by above is distribution-
free if F is continuous. It turns out that there is a uniform CLT corresponding
to the uniform LLN given by the Glivenko-Cantelli Theorem: ∆n → 0 at rate√
n. The limit distribution is known – it is the Kolmogorov-Smirnov (KS)

distribution

1− 2
∞∑
1

(−)k+1e−2k2x2

(x ≥ 0).

It turns out also that, although this result is a limit theorem for random
variables, it follows as a special case of a limit theorem for stochastic pro-
cesses. Writing B for Brownian motion, B0 for the Brownian bridge (B0(t) :=
B(t)− t, t ∈ [0, 1]),

Zn :=
√
n(Gn(t)− t) → B0(t), t ∈ [0, 1]
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(Donsker’s Theorem: Monroe D. DONSKER (1925-1991) in 1951 – origi-
nally, the Erdös-Kac-Donsker Invariance Principle). The relevant mathe-
matics here is weak convergence of probability measures (under an appropriate
topology). Thus, the KS distribution is that of the supremum of Brownian
bridge. For background, see e.g. Kallenberg Ch. 14.
Higher dimensions.

In one dimension, the half-lines (−∞, x] form the obvious class of sets to
use – e.g., by differencing they give us the half-open intervals (a, b], and we
know from Measure Theory that these suffice. In higher dimensions, obvious
analogues are the half-spaces, orthants (sets of the form

∏n
k=1(−∞, xk]), etc.

– the geometry of Euclidean space is much richer in higher dimensions. We
call a class of sets a Glivenko-Cantelli class if a uniform LLN holds for it, a
Donsder class if a uniform CLT holds for it. For background, see e.g.
[vdVW] A. W. van der VAART & J. A. WELLNER, Weak convergence and
empirical processes, with applications to statistics, Springer, 1996, Ch. 2.
This book also contains a good treatment of the delta method in this con-
text – the von Mises calculus (Richard von MISES (1883-1953), or infinite-
dimensional delta method.

Variants on the problem above include:
1. The two-sample Kolmogorov-Smirnov test.

Given two populations, with unknown distributions F , G, we wish to test
whether they are the same, on the basis of empiricals Fn, Gm.
2. Kolmogorov-Smirnov tests with parameters estimated from the data.

A common case here is testing for normality. In one dimension, our hy-
pothesis of interest is whether or not F ∈ {N(µ, σ2) : µ ∈ R, σ > 0}. Here
(µ, σ) are nuisance parameters: they occur in the formulation of the problem,
but not in the hypothesis of interest.

Although the Glivenko-Cantelli Theorem is useful, it does not tell us, say,
whether or not the law F is absolutely continuous, discrete etc. For, there are
discrete G arbitrarily close to an absolutely continuous F (discretise), and
absolutely continuous F arbitrarily close to a discrete F (by smooth approx-
imation to F at its jump points). So sampling alone cannot tell us what type
of law F is – absolutely continuous (with density f , say), discrete, continuous
singular, or some mixture of these. So it makes sense for the statistician to
choose what kind of population distribution he is going to assume. Often
(usually), this will be absolutely continuous; again, it makes sense to assume
what smoothness properties of the density f we will assume. This leads on
to the important subject of density estimation, to which we now turn.
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2. Curve and surface fitting.
We begin with some background. Suppose we have n points (xi, yi), with

the xi distinct, and we wish to interpolate them – find a function f with
f(xi) = yi, i = 1, . . . , n. One can of course do this by linear interpolation
between each adjacent pair of points, obtaining a continuous piecewise-linear
function – but this is not smooth enough for many purposes. One might
guess that as a polynomial of degree n− 1 contains n degrees of freedom (its
n coefficients), it might be possible to interpolate by such a polynomial, and
this is indeed so (Lagrangian interpolation, or Newtonian divided-difference
interpolation). There is a whole subject here – the Calculus of Finite Differ-
ences (the discrete analogue of the ordinary (‘infinitesimal’) calculus).

The degree n may be large (should be large – the more data, the better).
But, polynomials of large degree are very oscillatory and numerically unsta-
ble. We should and do avoid them. One way to do this is to use splines.
These are continuous functions, which are polynomials of some chosen low
degree (cubic splines are the usual choice in Statistics) between certain spe-
cial points, called knots (or nodes), across which the function and as many
derivatives as possible are continuous. So a cubic spline is piecewise cubic;
it and its first two derivatives continuous are across the knots.

Another relevant piece of background is the histogram, familiar from el-
ementary Statistics courses. One represents discrete data diagrammatically,
with vertical bars showing how many data points fall in each subinterval.

Computer implementation is necessary to use methods of this kind in
practice. For a general account using the computer language S (from which
R, and the proprietary package S-Plus, are derived), see e.g. [VR], 5.6.
Roughness penalty.

Using polynomials of high degree, we can fit the data exactly. But we
don’t, because the resulting function would be too rough (‘too wiggly’). It
is better to fit the data approximately rather than exactly, but obtain a
nice smooth function at the end. One way to formalise this (due to I. J.
GOOD (1916-2009) and his pupil R. A. Gaskins in 1971) is to use a rough-
ness penalty – to measure the roughness of the function by some integrated
measure –

∫
(f ′′)2 is the usual one for use with cubic splines – and minimise

a combination of this and the relevant sum of squares (see IV, [BF] 9.2):

min
n∑
1

(yi − f(xi))
2 + λ2

∫
(f ′′)2.
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Here λ2 is the smoothing parameter. It is under the control of the statistician,
who can choose how much weight to give to goodness of fit (the first term) and
how much to smoothness (roughness being measured by the second term).
1. Density estimation. Suppose we want to find as good a fit to the data as
possible using a density function with smoothness properties that we have
chosen (see above). One way to do this is to make two key choices:
(a) the kernelK(.). This is a density with the required smoothness properties;
(b) the bandwidth h > 0 (also called the window width).
One then defines the kernel density estimator

f̂(x) :=
1

nh

n∑
1

K
(x−Xi)

h

)
.

This is again a density, with the same smoothness properties as K. It turns
out that the properties of f̂ are mainly determined by h, and the choice of
K is less important. We must refer for detail here to a specialised text, e.g.
Silverman [Sil], Tapia and Thompson [TapT]. Such books contain graphics,
comparing kernel density estimates with histograms of the data.

Silverman’s book (4.2.3 Scatter plots, p. 81-83, Figs 4.6 – 4.8) contains a
contour plot of the two-dimensional density of a clinical measurement in the
treatment of a disease. Fig. 4.7 reveals that the contour plot is bimodal – has
two peaks (this will be familiar to those of you with map-reading experience
in hilly country, and is visually clear anyway). This suggested – correctly –
that there were in fact two different sub-populations present. Two different
types of this disease were identified, and different treatments developed for
them – a good example of an unexpected benefit from density estimation.

One can see similar effects more easily, in one dimension. If a histogram
of adult heights were plotted, it would again be bimodal. The reason is ob-
vious: males are statistically taller than females. So here sex, or gender, is a
relevant factor (recall that we met factor analysis briefly in III.3, III.5).

A less obvious example arises in teaching UK undergraduate mathematics
students. Again, exam scores after one year are bimodal. This reflects the
still-visible effects of having some students with single maths at A Level and
some with double maths. This difference is much less marked in later years.

The statistical moral here is clear. Bi- or multi-modality of a population
suggests that the population is heterogeneous. We should seek to identify
relevant factors2 causing this heterogeneity, disaggregate accordingly, and

2There is a whole subject, Factor Analysis – see [MKB], [K].
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analyse the sub-populations separately. Otherwise the aspect we wish to
study becomes entangled with (confounded with) these factors.
2. Non-parametric regression. This extends and complements the paramet-
ric regression in Ch. IV. The ideas above can be used to extend these ideas
to a non-parametric setting, using roughness penalties, cubic splines etc. We
refer for detail to, e.g., [BF], 9.2.
3. Semi-parametric regression. This combines Ch. IV and VI: see e.g.
D. RUPPERT, M. P. WAND & R. J. CARROLL: Semi-parametric regression
during 2003-07. Electronic J. Statistics 3 (2009), 1193-1256 [free, online], +
refs there, and book Semi-parametric regression (same authors, CUP, 2003).
4. Volatility surfaces. The volatility σ in the Black-Scholes formula is un-
known, and has to be estimated – either as historic volatility from time-series
data (Ch. V), or as implied volatility – the Black-Scholes price is (continu-
ous and) increasing in σ (‘options like volatility’), so one can infer ‘what the
market thinks σ is’ from the prices at which options currently trade. Closer
examination reveals that the volatility is not constant, but varies – e.g., with
the strike price (‘volatility smiles’). Volatility is observed to vary so unpre-
dictably that it makes sense to model is as a stochastic process (stochastic
volatility, SV). Market data is discrete, but for visual effect it is better to
use computer graphics and a continuous representation of such volatility sur-
faces. For a monograph treatment, see Gatheral [Gat].
Note. Because of the asymmetry between profit and loss, one often encoun-
ters skewness in financial data. In the context of the volatility smile, one
obtains a skew smile, known as the volatility smirk3.

The VIX – volatility index (colloquially called the ‘fear index’) is widely
used, and is the underlying for volatility derivatives. It has even affected
literature (see e.g. John Harris’ novel The fear index, Hutchinson, 2011).
5. Stochastic volatility and state-space models. Compare with V.11. In each,
one has a coupled set of equations (difference equations in discrete time, dif-
ferential equations in continuous time). The state variable plays the role of
the volatility – both unobserved.
6. Image enhancement. Images (of faces, moonscapes etc.) are typically cor-
rupted by ‘noise’. When these are digitised, into pixels, techniques such as
the Gibbs sampler (VI.4, VII.6) can improve quality, by iterations in which
a pixel is changed to improve agreement with ‘a consensus of neighbours’.

3A smirk is a smile one is ashamed of, and this negative feeling is often betrayed by a
visible asymmetry.
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