
SMF SOLUTIONS TO EXAMINATION. 2012

Q1. (i) Theorem (Cramér-Rao Inequality). Let Y = u(X) be any
unbiased estimator of θ. Then the minimum variance bound for var Y is

var Y ≥ 1/I(θ,X) = 1/(nI(θ)),

where I(θ) is the information per reading. [2]

An unbiased estimator is efficient if it attains the Cramér-Rao lower
bound. [2]
(ii) Iterative solution of the Likelihood Equation

It may not be possible to solve the Likelihood Equation (LE) ℓ′ = 0 for
the desired MLE θ̂ in closed form. In such cases, we have to proceed iter-
atively. Begin by drawing a rough graph of ℓ. By inspection, find a rough
approximation to the desired root. Call this trial value t. Then (with s = ℓ′)

0 = s(θ̂) = s(t) + (θ̂ − t)s′(θ∗),

with θ∗ between t and θ̂. Solving,

θ̂ = t− s(t)/s′(θ∗). (∗)
Fisher’s method of scoring. Here we replace s′(θ∗) by E[s′(t)] = 1/I(t). We
know that the MLE θ̂ is strongly consistent: θ̂ → θ0 as n → ∞, so for large
n θ̂ ∼ θ0; so if t is close enough to θ0 (all iterations need a close enough
starting value), t ∼ θ0, so also θ∗ ∼ θ0. So I(t) ∼ I(θ0), so by (∗),

θ̂ ∼ t− s(t)/E[s′(t)] = t+ s(t)I(t). (∗∗)
This is our next (better) approximation. [8]
(iii) Cauchy location family.

f(x;µ) =
1

π(1 + (x− µ)2)
, ℓ = log f = c− log[1 + (x− µ)2],

ℓ′ =
2(x− µ)

1 + (x− µ)2
, s(µ) := ℓ′(x;µ) = 2

n∑
1

(xi − µ)

1 + (xi − µ)2
.

The information per reading here is constant:

I(µ) = E[(ℓ′)2] =
∫
(∂f/∂µ)2f =

4

π

∫ (x− µ)2

[1 + (x− µ)2]3
dx =

4

π

∫
x2

[1 + x2]3
dx =

4

π
I,

say, which we can evaluate by Complex Analysis as 1
2
. We can then use these

values of s(µ), I(µ) = 1
2
in (∗∗). [8]

(Seen – lectures)
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Q2. (i) The delta method. Given

√
n(Tn − θ) → N(0, σ(θ)2),

with Tn the MLE θ̂ based on a sample of size n and σ2(θ) = 1/I(θ). Then
by the Mean Value Theorem

g(Tn)− g(θ) = (Tn − θ)(g′(θ) + ϵn) = (Tn − θ)g′(θ∗),

with ϵn a (random) error term and θ∗ between Tn and θ. From the given
result, Tn → θ, so θ∗ → θ also. So by continuity of g′, g′(θ∗) → g′(θ) (and
ϵn → 0). So

g(Tn)− g(θ) ∼ (Tn − θ)g′(θ).

Since var(cX) = c2 var X,

√
n(g(Tn)− g(θ)) → N(0, [g′(θ)σ(θ)]2) [8]

(ii) Invariance and Jeffreys priors. Suppose we work with a parameter θ,
with information per reading I(θ) = E[(ℓ′(θ)2] =

∫
((log f)θ)

2f(θ). If we
reparametrise to ϕ := g(θ), then as ∂/∂ϕ = (dθ/dϕ)(∂/∂θ),

I(ϕ) = (dθ/dϕ)2I(θ).

As in maximum-likelihood estimation, we choose a prior which is large where
the information is large; the Jeffreys prior is

π(θ) ∝
√
I(θ).

Then

π(ϕ)dϕ ∝
√
I(ϕ)dϕ =

√
I(θ)dθ ∝ π(θ)dθ : π(ϕ)dϕ = π(θ)dθ

(both sides integrate to 1, so we can take equality here). So the Jeffreys prior
is invariant under reparametrisation. [8]
(iii) The variance adds over independent (or even uncorrelated) summands, so
has much better mathematical properties than its square root, the standard
deviation (SD). But, the SD has the same dimensions (units) as the data, and
this is much better for data involving dimensions (anything except scalars).
So it is better to use both, and convenient to be able to pass between them
as above. [4]
((i) and (ii): Seen, lectures)
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Q3 (Sufficiency for the multivariate normal). Given a sample x1, . . . , xn from
a multivariate distribution, form the sample mean (vector) and the sample
covariance matrix as in the one-dimensional case:

x̄ :=
1

n

n∑
i=1

xi, [2]

S :=
1

n

n∑
i=1

(xi − x̄)(xi − x̄)T . [2]

(i) The multivariate normal distribution (in d dimensions) N(µ,Σ) (µ a d-
vector, Σ an d × d symmetric positive definite matrix) has density (Edge-
worth’s Theorem)

f(x) :=
1

(2π)
1
2
d|Σ| 12

exp{−1

2
(x− µ)TΣ−1(x− µ)}.

The likelihood for a sample of size 1 is

L(x|µ,Σ) = (2π)−p/2|Σ|−1/2 exp{−1

2
(x− µ)TΣ−1(x− µ)},

so the likelihood for a sample of size n is

L = (2π)−np/2|Σ|−n/2 exp{−1

2

n∑
1

(xi − µ)TΣ−1(xi − µ)}.

Writing xi − µ = (xi − x̄)− (µ− x̄),
n∑
1

(xi − µ)TΣ−1(xi − µ) =
n∑
1

(xi − x̄)TΣ−1(xi − x̄) + n(x̄− µ)TΣ−1(x̄− µ)

(the cross-terms cancel as
∑
(xi − x̄) = 0). The summand in the first term

on the right is a scalar, so is its own trace. Since trace(AB) = trace(BA)
and trace(A+B) = trace(B + A),

trace(
n∑
1

(xi − x̄)TΣ−1(xi − x̄)) = trace(Σ−1
n∑
1

(xi − x̄)(xi − x̄)T )

= trace(Σ−1.nS) = n trace(Σ−1S).

Combining,

L = (2π)−np/2|Σ|−n/2 exp{−1

2
n[trace(Σ−1S) + (x̄− µ)TΣ−1(x̄− µ)]}. [12]

So by the Fisher-Neyman Theorem, (X̄, S) is sufficient for (µ,Σ). [4]
(Seen – lectures)
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Q4. ARMA(1, 1).

Xt = ϕXt−1 + ϵt + θϵt−1 : (1− ϕB)Xt = (1 + θB)ϵt.

Condition for stationarity and invertibility: |ϕ| < 1; |θ| < 1. [2, 2]
Assuming these:

Xt = (1− ϕB)−1(1 + θB)ϵt = (1 + θB)(
∑∞

0
ϕiBi)ϵt

= ϵt +
∑∞

1
ϕiBiϵt + θ

∑∞
0
ϕiBi+1ϵt = ϵt + (θ + ϕ)

∑∞
1
ϕi−1Biϵt :

Xt = ϵt + (ϕ+ θ)
∑∞

i=1
ϕi−1ϵt−i.

Variance: lag τ = 0. Square and take expectations. The ϵs are uncorrelated
with variance σ2, so

γ0 = varXt = E[X2
t ] = σ2 + (ϕ+ θ)2

∑∞
1
ϕ2(i−1)σ2

= σ2 +
(ϕ+ θ)2σ2

(1− ϕ2)
= σ2(1− ϕ2 + ϕ2 + 2ϕθ + θ2)/(1− ϕ2) :

γ0 = σ2(1 + 2ϕθ + θ2)/(1− ϕ2) [8]

Covariance: lag τ ≥ 1.

Xt−τ = ϵt−τ + (ϕ+ θ)
∑∞

j=1
ϕj−1ϵt−τ−j.

Multiply the series for Xt and Xt−τ and take expectations:

γτ = cov(Xt, Xt−τ ) = E[XtXt−τ ],

= {[ϵt + (ϕ+ θ)
∑∞

i=1
ϕi−1ϵt−i].[ϵt−τ + (ϕ+ θ)

∑∞
j=1

ϕj−1ϵt−τ−j]}.

The ϵt-term in the first [.] gives no contribution. The i-term in the first [.]
for i = τ and the ϵt−τ in the second [.] give (ϕ + θ)ϕτ−1σ2. The product
of the i term in the first sum and the j term in the second contributes for
i = τ + j; for j ≥ 1 it gives (ϕ+ θ)2ϕτ+j−1.ϕj−1.σ2. So

γτ = (ϕ+ θ)ϕτ−1σ2 + (ϕ+ θ)2ϕτσ2
∑∞

j=1
ϕ2(j−1).

The geometric series is 1/(1− ϕ2) as before, so for τ ≥ 1

γτ =
(ϕ+ θ)ϕτ−1σ2

(1− ϕ2)
.[1−ϕ2+ϕ(ϕ+θ)] : γτ = σ2(ϕ+θ)(1+ϕθ)ϕτ−1/(1−ϕ2).

This decreases geometrically beyond the first term, and this behaviour is
indicative of ARMA(1, 1). [8]
(Seen – lectures and problems)
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Q5. (i) The joint MGF is

M(u, v) := E exp{uTAx+ ivTBx} = E exp{(ATu+BTv)Tx}.

This is the MGF of x at argument t = ATu+BTv, so

M(u, v) = exp{(uTA+vTB)µ+
1

2
[uTAΣATu+uTAΣBTv+vTBΣATu+vTBΣBTv]}.

This factorises into a product of a function of u and a function of v iff the
two cross-terms in u and v vanish, that is, iff AΣBT = 0 and BΣAT = 0; by
symmetry of Σ, the two are equivalent. [4]
(ii) P 2 = A(ATA)−1AT .A(ATA)−1AT = A(ATA)−1AT = P ;
(I − P )2 = I − 2P + P 2 = I − 2P + P = I − P .
So P , I − P are both (symmetric) projections. [4]
(iii) Recall that tr(A+B) = tr(A) + tr(B), and that tr(AB) = tr(BA). So

trace(I − AC−1AT ) = trace(I)− trace(AC−1AT ).

But trace(I) = n (as here I is the n×n identity matrix), and as trace(AB) =
trace(BA), trace(AC−1AT ) = trace(C−1ATA) = trace(I) = p, as here I is
the p× p identity matrix. So trace(I − AC−1AT ) = n− p. [4]
(iv) If λ is an eigenvalue of B, with eigenvector x, Bx = λx with x ̸= 0.
Then

B2x = B(Bx) = B(λx) = λ(Bx) = λ(λx) = λ2x,

so λ2 is an eigenvalue of B2 (always true – i.e., does not need idempotence).
So

λx = Bx = B2x = . . . = λ2x,

and as x ̸= 0, λ = λ2, λ(λ− 1) = 0: λ = 0 or 1. The trace is the sum of
the eigenvalues, which is r if there are r eigenvalues 1, i.e. when the rank is
r. So trace = rank. [4]
(v) Because P is a projection of rank r, it has r eigenvalues 1 and the rest 0.
We can diagonalise it by an orthogonal transformation to a diagonal matrix
with r 1s on the diagonal, followed by 0s. So the quadratic form xTPx can
be reduced to a sum of r squares of standard normal variates, y1, . . . , yr.
These are independent N(0, σ2) (if y = Ox with O orthogonal and the xi

iid N(0, 1), then the yi are also iid N(0, 1): for, the joint density of the xi

involves only ∥x∥, which is preserved under an orthogonal transformation).
So xTPx = y21 + . . . y2r is σ2 times a χ2(r)-distributed random variable. [4]
(Seen – lectures)
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Q6. In principal components analysis (PCA), we seek a dimension reduction,
say from p to k. The covariance (or correlation) matrix Σ can be written by
Spectral Decomposition as

Σ = ΓΛΓT ,

where Λ = diag(λi) with λ1 ≥ . . . ≥ λp ≥ 0 are the eigenvalues of Σ and
Γ is an orthogonal matrix of corresponding normalised eigenvectors. Then
y1 := γT

1 (x−µ) is the standardised linear combination (SLC – sums of squares
of coefficients = 1) of x with largest variance (λ1), ...,

yk := γT
k (x− µ)

the SLC of largest variance (λk) uncorrelated with y1, . . . , kk−1. Then the
proportion of the total variability explained by the first k PCs is

(λ1 + . . .+ λk)/(λ1 + . . .+ λp).

We continue to retain PCs until we are satisfied that this fraction is accept-
ably high. We then use these k PCs as a parsimonious summarisation in k
dimensions of the data in p dimensions. [10]

We need to choose, before doing PCA, whether to work with covariances
or with correlations. One prefers covariances when the units in which the
data are measured are meaningful, correlations otherwise. [2]
Examples with correlations. Typically, data are given in terms of prices, and
these are meaningful – they are expressed directly in terms of money. But
what matters to an investor now is whether the stock will appreciate or de-
preciate. The actual amounts he cares about are the amounts he will invest
in the various candidate stocks, and the number of stocks he holds in the
company is simply the ratio of his stake to the stock price. Similarly, with
foreign exchange, the units of currency in different countries may be of dif-
ferent orders of magnitude. Similarly for an investor dividing his holdings
between different economic sectors: what counts here is proportions. [4]
Examples with covariances. Examples where the units are meaningful in-
clude the internal accounts of a company, where different departments, or
activities, contribute to the overall company accounts and balance sheet: all
entries are in terms of money, and relate directly to profit and loss.

Empirical evidence suggests that in managing a portfolio of a range of
stocks, covariances are better than correlations. [4]
(Seen – lectures) NHB
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