smfsoln11(13).tex

SMF SOLUTIONS 12. 14.6.2013

Q1.

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} M & -MBD^{-1} \\ -D^{-1}CM & D^{-1} + D^{-1}CMBD^{-1} \end{pmatrix}$$
$$= \begin{pmatrix} AM - BD^{-1}CM & -AMBD^{-1} + BD^{-1} + BD^{-1}CMBD^{-1} \\ CM - CM & -CMBD^{-1} + I + CMBD^{-1} \end{pmatrix}.$$

The (1,1) element is I, from the definition of M. For the (1,2) entry, the first and third terms combine to give $-BD^{-1}$, again by definition of M, so the (2,1) element is 0. The (2,1) element is clearly 0. In the (2,2) element, the first and third terms cancel, so the (2,2) element is I. //

Q2.

$$K_{11} = M := \Sigma_{11} - \Sigma_{12} \Sigma_{22} \Sigma_{21},$$

$$K_{12} = -M \Sigma_{12} \Sigma_{22}, \quad \text{so} \quad K_{11}^{-1} K_{12} = -\Sigma_{12} \Sigma_{22}^{-1}.$$

By the last theorem of IV.6 D6, the covariance matrix of $x_1|x_2$ is the partial covariance matrix $\Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$. With Σ the partitioned matrix in Q3, this is M^{-1} , in the notation of Q3. By Edgeworth's theorem, this identifies the concentration matrix K_{11} of $x_1|x_2$ as $K_{11} = M$:

$$K_{11} = M;$$
 $M := (\Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21})^{-1}.$

If x_1 is a 2-vector, Σ_{11} , K_{11} are 2×2 matrices. Now (III.1)

$$\left(\begin{array}{cc}a&b\\c&d\end{array}\right)$$

a 2 × 2 matrix A is diagonal iff its inverse A^{-1} is diagonal. For a Gaussian vector, two components are independent iff they are uncorrelated, i.e. iff their (2 × 2) covariance matrix is diagonal. So: for a 2-vector x_1 , with $x^T = (x_1^T, x_2^T)$: the components of x_1 are conditionally independent given x_2 (i.e., given all the other components of x) iff K_{11} is diagonal, i.e. iff $k_{12} = 0$ in an obvious notation. Similarly for k_{ij} for any $i \neq j$. So: components x_i , x_j of a random vector $x \sim N(\mu, \Sigma)$ are conditionally independent given the other components iff $k_{ij} = 0$.

NHB