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V. TIME SERIES (TS).

1. Stationary processes and autocorrelation
A TS - a sequence of observations indexed by time - may well exhibit, on

visual inspection after plotting, a trend - a tendency to increase or decrease
with time, or seasonality, or both. However, the simplest case is where trend
and seasonality are absent, and we begin with this. Furthermore, even if
they are present, our first task may well be to remove them, by detrending
and/or seasonal adjustment.
Definition. A TS, or stochastic process, is strictly stationary if its finite-
dimensional distributions are invariant under time-shifts - that is, if for all
n, t1, · · · , tn and h, (Xt1 , · · · , Xtn) and (Xt1+h, · · · , Xtn+h) have the same dis-
tribution. In particular, for a stationary TS:
(i) taking n = 1, the marginal distribution of Xt is the same for all t, so the
mean of Xt (if it is defined, as we shall assume) is constant, = µ say, and so
is its variance (if defined, as we shall also assume), = σ2 say:

EXt = µ, varXt = σ2 for all t.

(ii) Taking n = 2, the distributions of (Xt1 , Xt2) is the same as that of
(Xt1+h, Xt2+h), and so depends only on the time-difference t2 − t1, called the
lag. With lag τ , it thus suffices to consider the distribution of (Xt, Xt+τ ),
which depends only on the lag τ , not the time t. In particular, the covariance
cov(Xt, Xt+τ ) is a function of τ only, γ(τ) say:

cov(Xt, Xt+τ ) = γ(τ) for all t

(note that γ(0) = varXt = σ2, for all t). Similarly for the correlation:

corr(Xt, Xt+τ ) = γ(τ)/γ(0) = ρ(τ).

Definition. The function

ρ(τ) := corr(Xt, Xt+τ )

is called the autocorrelation function of the (strictly) stationary process (Xt).
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Note. 1. If Xt is normal (Gaussian), its distribution (that is, the set of its
finite-dimensional distributions) is completely determined by its means and
covariances (equivalently, variances and correlations), µ and γ(τ) or ρ(τ).
Sometimes, however, we do not want to make the very strong assumption of
normality, but only need to specify the distribution of the process as far as
its means and covariances/correlations. As these involve only the one- and
two-dimensional distributions, they are called second-order properties.
2. Since covariance and correlation are commutative – cov(X, Y ) = cov(Y,X)
and corr(X, Y ) = corr(Y,X) –

γ(−τ) = γ(τ), ρ(−τ) = ρ(τ).

So we can think of the lag just as a time-difference – it does not matter
whether we think forwards in time or backwards in time.

Definition. A process (Xt) whose means and variances exist is called weakly
stationary (covariance stationary, second-order stationary, wide-sense sta-
tionary) if its meanEXt is constant over time and its covariance cov(Xt, Xt+τ )
depends only on the lag τ and not on the time t. We then use the notation
EXt = µ, cov(Xt, Xt+τ ) = γ(τ), corr(Xt, Xt+τ ) = ρ(τ) as above.
Note. 1. A strictly stationary process is always weakly stationary. The
converse is false in general but true for the normal (Gaussian) case.
2. For brevity, we now abbreviate ‘weakly stationary’ to ‘stationary’. We will
continue to say ‘strictly stationary’, unless the process is normal (Gaussian),
when the strictness is automatic (by above), so can be understood.
White Noise. The simplest possible case of stationarity is µ = EXt = 0,
γ(τ) = σ2ρ(τ), where ρ(τ) = corr(Xt, Xt+τ ) is 1 for τ = 0 and 0 otherwise.
Such processes exist in three levels of generality:
(i) no further restriction (distinct Xt uncorrelated, but may be dependent);
(ii) distinct Xt independent;
(iii) (Xt) normal – so distinct Xt are independent, because uncorrelated.

The term white noise (WN) is used for some/all such cases, or WN(σ2).
Note. The term shows clearly its engineering origins. The word ‘noise’ derives
from radio engineering (for instance, spontaneous thermal fluctuations, or
‘shot noise’, in thermionic valves), and telephone engineering. It is also used
in telecommunications, where the ‘noise’ – random error or disturbances –
may be visual rather than aural (recall that optical fibres are used nowadays
in cables for long-distance communication, with photons playing the role of
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electrons in the traditional telephone cables). The term ‘white’ is by analogy
with white rather than coloured light. In the language of spectral theory,
white noise has a flat spectrum (a ‘uniform mixture’ of frequencies - just as
white light is a mixture of the colours of the rainbow).
3. We shall use definition (ii) of white noise for convenience. Independence
will allow us to use LLN and CLT.
4. White noise is specific to discrete time. A process with correlation

ρ(τ) =

{
1 (τ = 0)
0 (τ ̸= 0)

is realistic in discrete time (such as the white noise above), but would be
pathological (and physically unrealisable) in continuous time, because of the
discontinuity in the correlation function. However, the process corresponding
to the integrated version of white noise in continuous time does exist and is
extremely important: Brownian motion (SP, Ch. III).
5. The ρ(.) above (1 at 0, 0 elsewhere) is the ‘Dirac delta’. To treat it math-
ematically, we need Functional Analysis – generalised functions, or Schwartz
distributions (Laurent SCHWARTZ (1915-2002) in 1948). This can then be
applied to develop white noise analysis, an extensive and useful field.

2. The correlogram
If (X1, · · · , Xn) is a section of a TS observed over a finite time-interval,

X̄ :=
1

n

∑n

i=1
Xi

is the sample mean. If µ = EXt is the population mean, by LLN (applied
to stationary, rather than independent, sequences – the Birkhoff-Khintchine
Ergodic Theorem, which we quote),

X̄ → µ = EXt (n → ∞) :

X̄ is a consistent estimator of µ = EXt.
The sample autocovariance at lag τ is

c(τ), cτ :=
1

n

∑n−τ

1
(Xt − X̄)(Xt+τ − X̄).

Proposition. c(τ) → γ(τ) (n → ∞).
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Proof. Expanding out the brackets in the definition above,

c(τ) =
1

n

∑
(XtXt+τ )− X̄.

1

n

∑
Xt+τ − X̄.

1

n

∑
Xt +

(n− τ)

n
(X̄)2.

By LLN (in the form of the Ergodic Theorem, as above),

1

n

∑
XtXt+τ → E(XtXt+τ ),

1

n

∑
Xt+τ → EXt+τ = µ,

1

n

∑
Xt → EX0 = µ.

So
c(τ) → E(XtXt+τ )− µ2 − µ2 + µ2 = E(XtXt+τ )− µ2.

But

γ(τ) = E[(Xt+τ − µ)(Xt − µ)] = E(Xt+τXt)− µEXt − µEXt+τ + µ2

= E(Xt+τXt)− µ2 − µ2 + µ2 = E(XtXt+τ )− µ2,

the limit obtained above. So c(τ) → γ(τ). //

Note. 1. Thus the sample autocovariance c(τ) is a consistent estimator of
the population autocovariance γ(τ).
2. To help remember this: in Statistics we use Roman letters for sample
quantities, Greek letters for population quantities or parameters.
Definition. The sample autocorrelation at lag τ is

rτ , r(τ) := c(τ)/c(0).

Corollary. r(τ) → ρ(τ) (n → ∞):
the sample autocorrelation r(τ) is a consistent estimator of the population
autocorrelation ρ(τ).
Definition. A plot of r(τ) against τ is called the correlogram.

The correlogram is the principal tool for dealing with Time Series in the
time domain - that is, looking at time-dependence directly. This is in contrast
to the frequency domain (spectral properties and Fourier analysis).
Large-Sample Behaviour.

The simplest case is where (Xt) is itself white noise, WN. Then ρ(0) = 1,
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ρ(τ) = 0 for all non-zero lags τ , by definition of WN, and r(0) = c(0)/c(0) = 1
also. For τ non-zero and n large, one expects r(τ) to be small (as r(τ) →
c(τ) = 0) – but how small? It was shown by M. S. BARTLETT in 1946 (see
e.g. Diggle [D] 2.5) that for large n and τ non-zero, r(τ) ∼ N(0, 1/n). So
as

√
nr(τ) ∼ Φ := N(0, 1), the standard normal distribution, which takes

values > 1.96 ∼ 2 in modulus with probability 5%, only values of r(τ) with

|r(τ)| ≥ 1.96/
√
n ∼ 2/

√
n

differ significantly from zero.

3. Autoregressive processes, AR(1)
Recall that in a linear regression model, the dependent variable Y de-

pends in a linear way on an independent variable X (or X1, X2, X3, · · ·, or
X,X2, X3, · · ·), with an error structure or noise process also present.

In a TS model, the current value Xt depends in a linear way on the pre-
vious value Xt−1 (or on the p previous values Xt−1, Xt−2, · · · , Xt−p), again
plus noise.
First-order case: AR(1). Suppose that our model is

Xt = ϕXt−1 +m+ ϵt, ((ϵt) WN)

for t an integer (positive, negative or zero), where (ϵt) is a white noise process
WN(σ2). Take means and use EXt = µ, Eϵt = 0:

µ = ϕµ+m.

So if ϕ ̸= 1,
µ = m/(1− ϕ),

and if ϕ = 1, then m = 0.
For simplicity, centre at means:

Xt − µ = ϕ(Xt−1 − µ) +m− µ+ ϕµ+ ϵt

= ϕ(Xt−1 − µ) +m− µ(1− ϕ) + ϵt

= ϕ(Xt−1 − µ) + ϵt,

by above. Centring at means (i.e. replacing Xt − µ by Xt) for simplicity, we
have

Xt = ϕXt−1 + ϵt, (∗)
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a simpler model, with all means zero. This is called an autoregressive model
of order one, AR(1). For, it has the form of a regression model, with Xt−1 as
the ‘dependent variable’ and Xt as the ‘independent variable’: Xt is regressed
on the previous X-value (earlier in time), so the process (Xt) is regressed on
itself (Greek: autos = self).

Using (∗) recursively,

Xt = ϕ(ϕXt−2 + ϵt−1) + ϵt

= ϕ2Xt−2 + ϕϵt−1 + ϵt

= · · ·
= ϕnXt−n +

∑n−1

i=0
ϕiϵt−1.

If |ϕ| < 1, this suggests that the first term on the RHS → 0 as n → ∞,
giving Xt =

∑∞
0 ϕiϵt−i. This is true, provided we interpret the convergence

of the infinite series on RHS suitably. We have

E[(Xt −
n−1∑
1

ϕiϵt−i)
2] = E[(ϕnXt−n)

2] = ϕ2nE[X2
t−n] = ϕ2nγ0,

where γ0 = varXt for all t. Since |ϕ| < 1, ϕ2n → 0 as n → ∞, so RHS → 0
as n → ∞. So LHS → 0 as n → ∞. This says that∑n

0
ϕiϵt−i → Xt (n → ∞),

or ∑∞

0
ϕiϵt−i = Xt,

in mean square (or, in L2).
Interpreting convergence in this mean-square sense,

Xt =
∑∞

0
ϕiϵt−i (∗∗)

expresses Xt on LHS as a weighted sum of ϵt, ϵt−1, ϵt−2, · · · on RHS. This
weighted sum resembles an average (although the weights sum to 1/(1− ϕ),
not 1 as is usual for an average), and the set (ϵt, ϵt−1, ϵt−2, · · ·) of white-noise
variables being averaged over moves with t; there are infinitely many of them.
Hence (∗∗) is called the infinite moving-average representation of the AR(1)
process (∗). Note that the further we go back in time, the more the ϵt−i are
down-weighted by the geometrically decreasing weights ϕi.
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Autocovariance of AR(1). Since ϵt+1 is independent of (or, using the weaker
definition of white noise, uncorrelated with) ϵt, ϵt−1, ϵt−2, · · ·, it is indepen-
dent of (or uncorrelated with) the linear combination Xt =

∑∞
0 ϕiϵt−i of

them. So ϵt+1 is uncorrelated with Xt, Xt−1, · · ·. This says that Xs and ϵt
are uncorrelated for s < t. Since all means are zero:

E(Xsϵt) = 0 (s < t).

Square both sides of (∗) and take expectations:

E[X2
t ] = ϕ2E[X2

t−1] + 2ϕE[Xt−1ϵt−1] + E[ϵ2t ].

The second term on RHS is zero by above; E[X2
t ] = varXt = γ0 for all t,

and E[ϵ2t ] = varϵt = σ2 for all t. So

γ0 = ϕ2γ0 + σ2 : γ0 = σ2/(1− ϕ2),

identifying γ0 in terms of the WN variance σ2 and the weight ϕ.
Multiply (∗) by Xt−τ (τ ≥ 1) and take expectations:

γτ = ϕγτ−1

(since ϵt on RHS is uncorrelated with Xt−τ ). Using this repeatedly,

γτ = ϕγτ−1 = ϕ2γτ−2 = · · · = ϕτγ0 = ϕτσ2/(1− ϕ2) :

γτ = σ2.ϕτ/(1− ϕ2) (τ ≥ 0),

giving the autocovariance of an AR(1) process as geometrically decreasing.
Passing to the autocorrelation ρτ = γτ/γ0: ρτ = ϕτ for τ ≥ 0). Note
that ρτ = ρ−τ (since two random variables have the same covariance and
correlation either way round), so we can re-write this as

ρτ = ϕ|τ |.

Recall |ϕ| < 1 here. Two cases are worth distinguishing.
Case 1: 0 ≤ ϕ < 1. Here the graph of ρτ is a geometric series with non-
negative common ratio. Since the sample autocorrelation rτ is an approx-
imation to ρτ , the correlogram (graph of rτ ) is an approximation to this.
Successive values of Xt are positively correlated: positive values of Xt tend
to be succeeded by positive values, and similarly negative by negative.
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Case 2: −1 < ϕ < 0. Here the graph is again a geometric series, but one
that oscillates in sign, as well as damping down geometrically. Successive
values of Xt are negatively correlated: positive values tend to be succeeded
by negative values, and vice versa.

To summarise: the signature of an AR(1) process is a correlogram that
looks like an approximation to a geometric series.
The Lag Operator.

Before proceeding, we introduce some useful notation and terminology.
The lag operator, or backward shift operator, operates on sequences by shift-
ing the index back in time by one. We write it as B:

BXt = Xt−1,

(though L - L for lag - is also used). Repeating this, B2 shifts back in time
by two, B2Xt = Xt−2, and generally

BnXt = Xt−n (n = 0, 1, 2, · · ·)

(B0 = I is the identity operator: B0Xt = IXt = Xt).
We can re-write (∗) in this notation as

Xt = ϕBXt + ϵt : (1− ϕB)Xt = ϵt.

Formally, this suggests

Xt = (1− ϕB)−1ϵt = (1 + ϕB + ϕ2B2 + · · ·+ ϕiBi + · · ·)ϵt
= 1 + ϕϵt−1 + ϕ2ϵt−2 + · · ·+ ϕiϵt−i + · · ·
=

∑∞

0
ϕiϵt−i,

which is (∗∗) as above, provided that the operator equation

(1− ϕB)−1 =
∑∞

i=0
ϕiBi

makes sense. It does make sense, with convergence on the RHS interpreted
in the mean-square sense as above, if |ϕ| < 1.
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