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10. ARCH and GARCH; Econometrics ([BF, 9.4.1, 220-222)

There are a number of stylised facts in mathematical finance. E.g.:
(). Financial data show skewness. This is a result of the asymmetry between
profit and loss (large losses are lethall)
(ii). Financial data have much fatter tails than the normal/Gaussian (I.5).
(iii) Financial data show volatility clustering. This is a result of the economic
and financial environment, which is extremely complex, and which moves
between good times/booms/upswings and bad times/slumps/downswings.
Typically, the market ‘gets stuck’, staying in its current state for longer than
is objectively justified, and then over-correcting. As investors are highly
sensitive to losses (see (i) above), downturns cause widespread nervousness,
which is reflected in higher volatility. The upshot is that good times are as-
sociated with periods of growth but low volatility; downturns spark extended
periods of high volatility (and stagnation, or shrinkage, of the economy).
ARCH and GARCH.

We turn to models that can incorporate such features (volatility cluster-
ing, etc.).

The model equations are (with Z; ind. N(0,1))

P
Xy = 012y, of = ag + ZO‘Z‘X?—U (ARCH (p))
1
while in GARCH (p, q) the o7 term becomes
P q
o} = g + Z ;X7 |+ Z BiXi (ARCH (p))
1 1

The names stand for (generalised) autoregressive conditionally heteroscedas-
tic (= variable variance). These are widely used in Econometrics, to model
volatility clustering — the common tendency for periods of high volatility, or
variability, to cluster together in time. See e.g. Harvey 8.3, [BF] 9.4, [BFK].
Integrated processes.

One standard technique used to reduce non-stationary processes to the
stationary case is to difference them repeatedly (one differencing operation
replaces X; by X; — X;_1). If the series of dth differences in stationary but
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that of (d — 1)th differences is not, the original series is said to be integrated
of order d; one writes (X;) ~ I(d).
Co-integration.

If (X;) ~ I(d), we say that (X;) is cointegrated with cointegration vector
a if T X;) is (integrated of) order less than d.

A simple example arises in random walks. If X, = > & with &
iid random variables, Y,, = X,, + ¢, is a noisy observation of X,, then
(X,Y) = (X,,Y,) is cointegrated of order 1, with coint. vector (—1,1)7.

Cointegrated series are series that move together, and commonly occur in
economics. These concepts arose in econometrics, in the work of R. F. EN-
GLE (1942-) and C. W. J. (Sir Clive) GRANGER (1934-2009) in 1987. Engle
and Granger gave (in 1991) an illustrative example — the price of tomatoes
in North Carolina and South Carolina. These states are close enough for a
significant price differential between the two to encourage sellers to transfer
tomatoes to the state with currently higher prices to cash in; this movement
would increase supply there and reduce it in the other state, so supply and
demand would move the prices towards each other.

Engle and Granger received the Nobel Prize in Ecomomics in 2003. The
citation included the following: ”Most macroecomomic time series follow a
stochastic trend, so that a temporary disturbance in, say, GDP has a long-
lasting effect. These time-series are called non-stationary; they differ from
stationary series which do not grow over time, but fluctuate around a given
value. Clive Granger demonstrated that the statistical methods used for sta-
tionary time series could yield wholly misleading results when applied to the
analysis of nonstationary data. His significant discovery was that specific
combinations of nonstationary time series may exhibit stationarity, thereby
allowing for correct statistical inference. Granger called this phenomenon
cointegration. He developed methods that have become invaluable in sys-
tems where short-run dynamics are affected by large random disturbances
and long-run dynamics are restricted to economic equilibrium relationships.
Examples include the relations between wealth and consumption, exchange
rates and price levels, and short- and long-term interest rates.”

Spurious regression.

Standard least-squares method work perfectly well if they are applied to
stationary time series. But if they are applied to non-stationary time series,
they can lead to spurious or nonsensical results. One can give examples of
two time series that clearly have nothing to do with each other, because they
come from quite unrelated contexts, but nevertheless have a high value of



R?. This would normally suggest that a correspondingly high propertion
of the variability in one is accounted for by variability in the other — while
in fact none of the variability is accounted for. This is the phenomenon of
spurious regression, first identified by G. U. YULE (1871-1851) in 1927, and
later studied by Granger and Newbold in 1974. We can largely avoid such
pitfalls by restricting attention to stationary time series, as above.

From Granger’s obituary (The Times, 1.6.2009): ”Following Granger’s
arrival at UCSD in La Jolla, he began the work with his colleague Robert F.
Engle for which he is most famous, and for which they received the Bank of
Sweden Nobel Memorial Prize in Economic Sciences in 2003. They developed
in 1987 the concept of cointegration. Cointegrated series are series that tend
to move together, and commonly occur in economics. Engle and Granger
gave the example of the price of tomatoes in North and South Carolina ....
Cointegration may be used to reduce non-stationary situations to stationary
ones, which are much easier to handle statistically and so to make predictions
for. This is a matter of great economic importance, as most macroeconomic
time series are non-stationary, so temporary disturbances in, say, GDP may
have a long-lasting effect, and so a permanent economic cost. The Engle-
Granger approach helps to separate out short-term effects, which are random
and unpredictable, from long-term effects, which reflect the underlying eco-
nomics. This is invaluable for macroeconomic policy formulation, on matters
such as interest rates, exchange rates, and the relationship between incomes
and consumption.”

Endogenous and exogenous variables.

The term ‘endogenous’ means ‘generated within’. The ARCH and GARCH
models above show how variable variance (or volatility) can arise in such a
way. By contrast, ‘exogenous’ means ‘generated outside’. Exogenous vari-
ables might be the effect in a national economy of international factors, or
of the national economy on a specific firm or industrial sector, for example.
Often, one has a vector autoregressive (VAR) model, where the vector of
variables is partitioned into two components, representing the endogenous
and exogenous variables. For monograph treatments in the econometric set-
ting, see e.g. [G], [GM].

Discrete and continuous time.

While econometric data arrives discretely (monthly trade figures, daily
closing prices for stocks, etc.), continuous time is more convenient for dy-
namic models of the economy. See e.g.

A. R. BERGSTROM: Continuous-time ecomometric modelling, OUP, 1990.



11. State-space models and the Kalman filter

State-space models originate in Control Engineering. This field goes back
to the governor on a steam engine (James WATT (1736-1819) in 1788): to
prevent a locomotive going too fast, the governor (a rotating device mounted
on top of the engine) rose under centrifugal force as the speed increased, thus
operating a valve to reduce the steam entering the cylinders. This was an
early form of feedback control.

The Kalman filter (Rudolf KALMAN (1930-) in 1960) was a device for
online (or real-time) control, suitable for use with linear systems, quadratic
loss and Gaussian errors (LQG) (the term filter is used because one ‘filters
out’ the noise from the signal to reveal the best estimate of the state). This
appeared just when it was needed, for online control of manned spacecraft
during the 60s. We shall not develop the control aspects here; see e.g.

M. H. A. DAVIS, Linear estimation and stochastic control, Chapman & Hall,
1977,

M. H. A. DAVIS & R. B. VINTER, Stochastic modelling and control, Chap-
man & Hall, 1985.

But the power of the method even without control can be seen in applications
such as to mortar-locating radar'. We follow Whittle ([W], Th. 12.5.2); cf.
[BD1] Ch. 12, [BD2] Ch. 8.

The Kalman filter has been extensively applied in Time Series, financial
and otherwise. We cited Harvey’s Time series models in D0; see also
A. C. HARVEY, Forecasting, structural time series models and the Kalman
filter, CUP, 1991.

With the engineering example in mind for definiteness, suppose that the
state of the system at time n is represented by some p-vector x(n). Although
the state = is what we are interested in, we cannot observe it directly; what
we can observe is a signal, or outputy, or y(n) at time n, a g-vector. We apply
a control u(n — 1), based on information F,,_; available at time n — 1. The
dynamics are represented by the following two equations, the state equation
(SE) and the observation equation (OF):

z(n) =A(n —1)z(n—1)+ B(n — Du(n — 1e(n — 1), (SE)

y(n) = C(n)x(n) +n(n). (OF)

1Used in, e.g., the Siege of Sarajevo, 1992-96.




Here A(.), B(.),C(.) are known matrices. The errors €(.), n(.) are p- and
g-vectors respectively, with means 0; the errors at different times are all
uncorrelated (= independent, if the errors are Gaussian, as we may assume
here); the covariance matrices are known matrices

cov(e(n)) = N(n), — cov(n(n)) = M(n),  cov(e(n),n(n)) = L(n),

In the motivating trajectory example, A(.) comes from the dynamics of the
vehicle being tracked, C(.) from the properties of the tracking equipment,
B(.) from the control mechanism.
For simplicity, we restrict to the case where A(n) = A for all n, and sim-
ilarly for B and C; there is no difficulty in extending to the general case.
We write Z(n) for the best linear predictor (in the sense of minimising ex-
pected squared error) of z(n) given the information F(n) available at time n.

Theorem (Kalman filter). (i) The conditional distribution of z(n) given
F(n) is N(&(n),V(n)), where the covariance matrix V(n) is given by the
Kalman recursion in (iii) below.

(ii) (Kalman filter). The estimate #(n) is given by the recursion (updating
relation)

#(n) = Azt(n — 1)+ Bu(n — 1) + H(n)(y(n) — Cz(n — 1)),

where

H(n) = (L+AV(n—-1)C")(M +CV(n—1)CT)~".

(iii) (Kalman recursion). The covariance matrix V'(n) is given by the recur-
sion (updating relation)

V(n) = N+AV (n—1)AT—(L+AV (n—1)CT)(M+CV (n—1)CT) 1 (LT+CV (n—1) AT).

Proof. (i) We start with x(0) ~ N(z(0), V' (0)). That z(n)|F(n) ~ N(z(n),V(n))

is clear from IV.6 on conditioning and regression for the multinormal, and is
also proved by induction from the recursions (ii), (iii) below.

Write the estimation error as A(n) := x(n)—2(n); then V(n) = cov(A(n)).
Now

An—=1) = z(n—-1)—1=
e(n—1) = z(n)— Az(n—1) — Bu(n —1)
n(n) = yn) - Ca(n



are jointly normal with mean 0 and covariance matrix

V 0 0
o N L |,
0 LT M

where for convenience we write V' for V(n — 1). We now replace z(n — 1)
(unobservable) by #(n — 1) + A(n — 1) (we know the first, and know the
covariance V' of the second), and define

(*(n) = z(n)—Az(n—1) — Bu(n —1)
= z(n)—Azx(n—1)— Bu(n — 1)+ A(z(n — 1) = 2(n — 1))
(n) + AA(n — 1),

™M

¢(n) = y(n)—-Ci(n-1)
= yn)—Czx(n—1)+C(z(n—1)—z(n—1))
= n(n)+CA(n—1).

Then
¢(n)\ [ AAn—1)+en)\ (A 10 Agzn_) 1 - N(O.Z)
¢(n) ) \CA(n—=1)+nn) /] \C 01 T
n(n)
where the covariance matrix X is given by
T T T T
410 vV o0 0 At C 410 VA" V(O
Y= C o1 0O N L 1 0 =l c o1 N L
0 LT M 0 1 LT M

LT+ CVAT M+ CvCT

Both (ii) (conditional means) and (iii) (conditional variances) now follow
from the normal Conditioning Theorem of IV.6, D9. //

E_( N+ AVAT L+ AVCT )

It is difficult to overestimate the practical importance of this key result.
It has proved its worth in practice in many areas since its introduction in

1960.



Ezxtensions.
1. Non-Gaussian errors.

The result extends beyond the context of Gaussian errors (multivariate
normal distribution) above. One does not obtain the full distribution, but
works instead with means and variances. See e.g. Whittle [W], 12.8 and Th.
12.9.4; see also the Bayes linear estimate of VII.7.8 D19.

2. Prediction further into the future.

The method above can be readily adapted to prediction £ time-steps into
the future. This is done in detail in [BD2], 12.3.

3. Smoothing.

Instead of predicting the future, one can instead seek to get the best fit
we can to the data. The mathematics is very similar; see e.g. [BD2], Prop.
12.2,3, 4.

4. Riccati equation.

The non-linear recursion (iii) is a matrix Riccati equation, and this name
is often used instead of Kalman recursion.
5. Off-line calibration.

To use a Kalman filter, one needs the relevant matrices, A, B,C, L, M, N.
In practice, these will have to be estimated numerically. This can be done
off-line, ‘at leisure’. Once accurate (enough) numerical estimates of these
matrices are known, and the recursions (ii) and (iii) programmed, the filter
can be used online (in real time).

6. Innovations.

The innovations are I(n) := y(n) — Cz(n — 1). These are the differences
between an observation y(n) and the prediction CZ(n — 1) we would have
made for it at time n — 1 (from the observation equation (OF)). This is the
new information at time n — beyond what we could have predicted. They
are mutually uncorrelated (independent, in the Gaussian case, as here). One
can base the theory on them ([W], 12.7).

7. Hilbert-space methods.

The prediction above is done in the least-squares sense — to minimise the
expected squared errors. This has a nice geometrical interpretation in terms
of projections (see e.g. [BF], Ch. 4). In our finite-dimensional setting, this
just involves Euclidean geometry, but the method works just as well in in-
finitely many dimensions — Hilbert space (which one can think of as ‘Eucliean
space of infinitely many dimensions’).

8. Contlinuous time.
One can work instead in continuous time, where the recurrence (or dif-
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ference) equations above are replaced by differential equations. See e.g. [W],
Ch. 20. Hence the name Riccati — Riccati’s differential equation.
9. Nonlinear systems.

The Kalman filter is linear, and (as linearity and Gaussianity are so
closely linked) works very well in the Gaussian case. However, in practice
one encounters non-linear systems (and non-Gaussian errors). The extended
Kalman filter reduces to the linear case by linearisation. This works well in
some applications (such as GPS — geographic positioning systems). But it
does not always give good results — for example, it may not be numerically
stable. Also, to implement it one needs computer-intensive methods such as
MCMC (Markov chain Monte Carlo), particle filters etc.?

10. Financial applications.

The Kalman filter has been extensively applied in finance (e.g., for cali-
bration of interest-rate models). For background, see e.g.

C. WELLS, The Kalman filter in finance, Springer, 1996;
11. State-space models for time series.

The Kalman filter, and state-space models generally, have also been ex-
tensively used in Time Series; see e.g.

J. DURBIN & S. KOOPMAN, Time series analysis by state-space methods,
OUP, 2001;

A. C. HARVEY, Forecasting, structural time series models and the Kalman
filter, CUP, 1991;

12. Change-point detection.

One important application is in automatic control of industrial produc-
tion. If a machine in use begins to deteriorate, or deviate from its required
performance level (for lack of maintenance, etc.), it is important to be able
to detect this as quickly as possible. Such quick-detection problems are an
important area of application of the Kalman filter and its relatives.

13. Control.

For further background on Control Theory, see e.g.

M. H. A. DAVIS, Linear estimation and stochastic control, Chapman & Hall,
1977,

M. H. A. DAVIS & R. B. VINTER, Stochastic modelling and control, Chap-
man & Hall, 1985.

2MCMC and particle filters are specialities of the Imperial College Mathematics De-
partment.



