
smfd15(13a).tex
Day 15. 28.11.2013.

3. Semi-parametric regression. This combines Ch. IV and VI: see e.g.
D. RUPPERT, M. P. WAND & R. J. CARROLL: Semi-parametric regression
during 2003-07. Electronic J. Statistics 3 (2009), 1193-1256 [free, online], +
refs there, and book Semi-parametric regression (same authors, CUP, 2003).
4. Volatility surfaces. The volatility σ in the Black-Scholes formula is un-
known, and has to be estimated – either as historic volatility from time-series
data (Ch. V), or as implied volatility – the Black-Scholes price is (continu-
ous and) increasing in σ (‘options like volatility’), so one can infer ‘what the
market thinks σ is’ from the prices at which options currently trade. Closer
examination reveals that the volatility is not constant, but varies – e.g., with
the strike price (‘volatility smiles’). Volatility is observed to vary so unpre-
dictably that it makes sense to model is as a stochastic process (stochastic
volatility, SV). Market data is discrete, but for visual effect it is better to
use computer graphics and a continuous representation of such volatility sur-
faces. For a monograph treatment, see Gatheral [Gat].
Note. Because of the asymmetry between profit and loss, one often encoun-
ters skewness in financial data. In the context of the volatility smile, one
obtains a skew smile, known as the volatility smirk1.

The VIX – volatility index (colloquially called the ‘fear index’) is widely
used, and is the underlying for volatility derivatives. It has even affected
literature (see e.g. John Harris’ novel The fear index, Hutchinson, 2011).
5. Stochastic volatility and state-space models. Compare with V.11. In each,
one has a coupled set of equations (difference equations in discrete time, dif-
ferential equations in continuous time). The state variable plays the role of
the volatility – both unobserved.
6. Image enhancement. Images (of faces, moonscapes etc.) are typically cor-
rupted by ‘noise’. When these are digitised, into pixels, techniques such as
the Gibbs sampler (VI.4, VII.6) can improve quality, by iterations in which
a pixel is changed to improve agreement with ‘a consensus of neighbours’.

3. Non-parametric likelihood
At first glance, ‘non-parametric likelihood’ seems a contradiction in terms

1A smirk is a smile one is ashamed of, and this negative feeling is often betrayed by a
visible asymmetry.
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(an oxymoron – ‘square circle’, etc.) But it turns out that maximum-
likelihood estimation (MLE) can indeed be usefully combined with non-
parametrics. First, we interpret the empirical Fn as a non-parametric MLE
(NPMLE) for the unknown true distribution F . For, if the data is {x1, . . . , xn},
the likelihood of F is L(F ) :=

∏n
1∆F (xi) (where ∆F (x) := F (x)− F (x−) is

the probability mass on x), F ({x})). It makes sense to restrict attention to
distributions F with support in {x1, . . . , xn}, that is, absolutely continuous
wrt the empirical Fn: F << Fn, and Fn does indeed maximise the likelihood
over these F (Kiefer & Wolfowitz, 1956). Then it makes sense to call T (Fn)
a NPMLE for T (F ), where T is some functional – the mean, for example.

Let X,X1, . . . , Xn . . . be iid random p-vectors, with mean EX = µ and
covariance matrix Σ of rank q. In higher dimensions, the distribution func-
tion, P (. ≤ .), which leads to confidence intervals, is replaced by P (. ∈ .),
which leads to confidence regions (which covers the unknown parameter with
some probability); convexity is a desirable property of such confidence re-
gions. For r ∈ (0, 1), let

Cr,n := {
∫

XdF : F << Fn, L(F )/L(Fn) ≥ r}.

Then Cr,n is a convex set, and

P (µ ∈ Cr,n) → P (χ2(q) ≤ −2 log r) (n → ∞)

(the rate is O(1/
√
n) if E[∥X∥4] < ∞). This is a non-parametric analogue

of Wilks’ Theorem (II.3 above) (A. Owen 1990; P. Hall 1990): ”−2 logLR ∼
χ2(q)”. For a monograph account, see Owen [O].

In view of results of this type, it is common practice, when we want the
distribution of T (F ) when F is unknown, to use T (Fn) as an approximation
for it. This is commonly known as a plug-in estimator (just plug it in as an
approximation when we need the exact answer but do not know it); ‘empir-
ical estimator’, or ‘NPMLE’, would also be reasonable names.

Suppose we want to estimate an unknown density f , which is known to
be decreasing on [0,∞)(example: the exponential). A density is the deriva-
tive of a distribution; a concave function has a decreasing derivative (when
differentiable). The NPMLE fn of such a density is the (left-hand) derivative
of the least concave majorant of Fn (Grenander, 1956). This example is inter-
esting in that a CLT is known for it, but with an unusual rate of convergence
– cube-root asymptotics:

n1/3(fn(t)− f(t)) → |4f ′(t)f(t)|1/3argmaxh(B(h)− h2),
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with B BM and argmax the argument (= point) at which the maximum is
attained (Kim and Pollard 1990).
Semi-parametrics.

Consider the elliptical model, with multidimensional density

f(x) = const.g(Q(x)), Q(x) = (x− µ)TΣ−1(x− µ).

Here g : R+ → R+ is a function, the density generator, to be estimated. This
is the non-parametric part of the model; (µ,Σ) is as above, the parametric
part of the model. The model as a whole is then called semi-parametric.

Such models are very suited to financial applications. Notice how they
generalise the multivariate normal or Gaussian (recall Edgeworth’s theorem
of IV.3). The parametric part (µ,Σ) is clearly needed in financial modelling,
because of Markowitz’s work on risk (Σ) and return (µ), and diversification
(Σ again) (I.5, Day 2). The non-parametric part g allows us to choose a g
that reflects the tail-behaviour observed in the data. For instance, for finan-
cial return data, it turns out that the return interval, ∆ is crucial. For ∆
long (monthly returns, say – though the rule of thumb is that 16 trading days

suffice), the Gaussian (g(x) = e−
1
2
x) suffices. This is an instance of aggrega-

tional Gaussianity – in other words, the Central Limit Theorem (CLT – see
e.g. SP). For intermediate ∆ – daily returns, say – the generalised hyperbolic
(GH) distributions have been found to fit well. For short ∆ – high-frequency
data (tick data), g decreasing like a power (Pareto tails, or heavy tails –
e.g. Student t) is both observed and predicted theoretically (the renormal-
isation group in Physics). These models have been extensively studied; see
e.g. [BKRW], and [BFK] for some applications. In some cases, ignorance of
one part of the model imposes no loss of efficiency when estimating the other
part. This is the case for the elliptic model above, essentially for reasons to
do with invariance under the action of the affine group. See [BKRW], 4.2.3,
6.3.9, 7.2.4, 7.8.3 for the theory, [BFK] for some applications.
Note. For Gaussian returns (say, monthly data), the density decreases ex-
tremely rapidly (far more so than is observed in practice!); the log-density
decreases quadratically. In the generalised hyperbolic case (say, daily data),
the log-density decreases only linearly (recall that a hyperbola approaches
linear asymptotes). In the high-frequency case (say, tick data), the den-
sity decays like a power (say, like Student t). But recall that for large n,
t(n) → N(0, 1) – a quite different limiting operation (degrees of freedom
n → ∞) from that in the tails (x → ∞).
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4. Limit theorems; Markov chains; MCMC
We quote (see e.g. SP, PfS):

1. Strong Law of Large Numbers (SLLN): if X1, X2, . . . are independent and
identically distributed (iid), with each Xn, X ∼ F , then

1

n

n∑
1

Xi → E[X] = µ :=

∫
xdF (x) (n → ∞) a.s.

This includes as a special case the Weak Law of Large Numbers (WLLN),
with convergence in probability in place of convergence a.s.
2. Central Limit Theorem (CLT). If also the Xn have variance σ2 < ∞, then

1

σ
√
n

n∑
1

(Xi − µ) → N(0, 1) (n → ∞) in distribution.

So if f is such that f(Xn) also has (finite) mean and variance, then

1

n

n∑
1

f(Xi) → E[f(X)] a.s.;
1√

n var X

n∑
1

(f(Xi)−E[f(X)]) → N(0, 1).

The mode of convergence here is convergence in distribution, also known as
weak convergence. This is weaker than convergence in probability, but when
the limit is a constant (as in WLLN), the two are equivalent.

The convergence in the Glivenko-Cantelli theorem is uniform a.s., which
is very strong. Similarly for weak convergence: for bounded continuous f ,∫

fdFn →
∫

fdF :
1

n

n∑
1

f(Xi) → E[f(X)] a.s.,

as above. The CLT above follows similarly from Donsker’s theorem.
All this can be generalised far beyond the setting above of the iid case.

We can work with Markov chains (see e.g. PfS VII) (discrete time will suf-
fice for us, but the theory can be developed in continuous time). In PfS VII
Markov chains are developed for discrete state spaces (finite or countably
infinite). The definition of the Markov property is that, for predicting the
future, knowing where one is at the present is all that matters – if we know
where we are, how we got there is irrelevant. This irrelevance of the past
suggests that as time passes the past ‘becomes forgotten’, and the chain set-
tles down to some sort of steady state or equilibrium distribution, π – even
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to a limit distribution π in favourable cases. Some Markov chains have no
limit distribution (e.g., the trivial chain on the integers, which just moves
1 to the right at each step). But many Markov chains do have an equilib-
rium distribution, and even (if periodicity complications are absent) a limit
distribution. See e.g. PfS VII for details. In particular, we need the idea
of detailed balance (DB). A Markov chain with transition probability matrix
P = (pij) and limiting distribution π = πi satisfies the detailed balance con-
dition (DB) if πipij = πjpji for all i, j. We quote (Kolmogorov’s theorem)
that this is the same as time-reversibility.

When the Markov chain has suitably good properties (which ensure a
limit distribution) – typically, appropriate recurrence properties, of return-
ing repeatedly to its starting point – then the Markov chain satisfies a SLLN
and a CLT as above. We shall not give details (see e.g. [MeyT] Ch. 17).

It turns out that all this carries over to continuous-state Markov chains
(the case relevant to Statistics), subject to suitable restrictions on the chain,
of which Harris recurrence is the best known.
Markov Chain Monte Carlo (MCMC); Hastings-Metropolis algorithm (HM)

We briefly sketch this; see VII.6 below for statistical applications.
The aim here is to sample from a distribution π. This may be straight-

forward (see IS); if not, we may proceed as follows. We construct a Markov
chain X = (Xn) for which π is the limit distribution (we assume this has a
density, also written π). HM selects a transition density q(x, .) (see below for
choice of q), and then at each step, conditional on Xk−1 = x, HM proposes
a new value Yk drawn from this transition density q(x, .). This value Yk is
accepted as the new value Xk with probability

p(x, y) := min
(
1,

π(y)q(y, x)

π(x)q(x, y)

)
;

otherwise, Xk is taken as the previous value Xk−1. One can check that
this does indeed define a Markov chain, which satisfies (the continuous form
of) (DB) and has invariant (= equilibrium) distribution π. Here q(x, y) :=
p(|x − y|), for some transition density p of a symmetric random walk (the
choice is usually not critical). What is critical in applying MCMC in practice
is the rate of convergence. We have to run the chain for a long enough ‘burn-
in’ period for it to be ‘approximately in equilibrium’.

5



VII. BAYESIAN STATISTICS

1. Classical statistics and its limitations.
Broadly speaking, statistics splits into two main streams: (i) classical,

or frequentist, and (ii) Bayesian. Much of classical statistics is devoted to
the following general areas: Estimation of parameters (I), Hypothesis testing
(II). Again, this is not exhaustive: the main remaining area is Non-parametric
statistics (VI). Estimation of parameters itself splits, into
(ia). Point estimation [ e.g., maximum-likelihood estimates],
(ib). Interval estimation [e.g., confidence intervals].
Both these are open to interpretational objections. A point estimate is a
single number, which will almost certainly be wrong [i.e., will differ from the
value of the parameter it estimates]. How wrong? And how to proceed?

A confidence interval is more informative, because it includes an error
estimate. For instance, its mid-point can be regarded as a point estimate,
and half its length as an error estimate – leading to conclusions of the form

θ = 3.76± 0.003 (∗)

– with confidence 95% [or 99 %, or whatever]. What does this mean? It is
not a probability statement:
either θ lies between 3.73 and 3.79 [(*) is true, so holds with pr. 100 %]
or it doesn’t [(*) is false, so holds with pr. 0 %].
Problem: We don’t know which!
Interpretation. If a large number of statisticians independently replicated the
analysis leading to (*), then about 95 % of them would succeed in producing
confidence intervals covering the unknown parameter θ. But
(a) We wouldn’t know which 95 %,
(b) This is of doubtful relevance anyway. The large number of independent
replications will usually never take place in practice. So confidence state-
ments like (*) lack, in practice, a direct interpretation. [They are ‘what
happens to probability statements in classical statistics when we put the
numbers in’.]

A further problem is that small changes in our data can lead to abrupt
discontinuities in our conclusions. In borderline situations, θ ‘just within’
the confidence interval and ‘just outside’ represent diametrically opposite
outcomes, but the data may be very close. Small changes in input should
only lead to small changes in output, rather than abrupt changes.

Hypothesis testing is open to similar objections. It is usual to have a null
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hypothesis, H0, representing our present theory (the ‘default option’), and
an alternative hypothesis, H1, representing some proposed alternative theory.
At the end of the investigation, we have to choose between two alternatives.
We may be wrong: we may
reject H0 when it is true, and choose H1 [Type I error, probability α, the
significance level], or
reject H1 when it is true, and choose H0 [Type II error, probability β].
We then have a trade-off between α and β. It is not always clear how to
do this sensibly, still less optimally [it is customary to choose α = 0.05 or
0.01, and then try to minimise β, but this is merely conventional]. Again,
problems present themselves:
(i) We won’t know whether our choice between H0 and H1 was correct;
(ii) Small changes in the data can lead to abrupt changes between choosing
H0 and choosing H1.

Thus both the main branches of classical parametric statistics lead to
abruptly discontinuous conclusions and present interpretational difficulties.
One justification for Bayesian statistics is that it avoids these. There are
many others: we shall argue for Bayesian statistics below on its merits.
2. Prior knowledge and how to update it.

The difficulties identified above arise because in classical statistics we rely
entirely on the data, that is, on the sample we obtained. The mathematics
involved in classical statistics amounts to comparing the sample we actually
obtained with the large (usually, infinite) class of hypothetical samples we
might have obtained but didn’t. These include the samples that we would
obtain if we repeated our sampling independently – or that other statisticians
would obtain if they independently replicated our work. This is where the
term ‘frequentist’ for classical statistics originates: e.g., in 95 % confidence
intervals, independently replicated confidence intervals would cover the pa-
rameter θ with frequency 0.95.

The other aspect of classical statistics crucial for our purposes is that it
ignores everything before sampling. This is often unreasonable. For instance,
we may know a good deal about the situation under study, based on prior
experience. Such situations are typical in, e.g., industrial quality control:
suppose we are employed by a rope manufacturer, and are testing the break-
ing strain of ropes in a current batch. We may have to hand large amounts
of data obtained from tests on previous batches from the same production
line. In hypothesis testing, such prior knowledge is tacitly assumed, because
we need it to be able to formulate H0 and H1 sensibly. But we may not be
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willing to enter the ‘accept or reject’ framework of hypothesis testing [which
some statisticians believe is inappropriate and damaging]: how then can we
use prior knowledge? In the estimation framework also, we may know a lot
about θ before sampling [as in the rope example above]: indeed, if we do
not have some prior knowledge of the situation to be studied, we would in
practice not have enough prior interest in it to be willing to invest the time,
trouble and money to study it statistically.

Bayesian statistics addresses this by giving a framework where
1. The statistician knows something before sampling: he has some prior
knowledge.
2. He then draws a sample, and analyses the data to extract some relevant
information.
3. He then updates his prior information with his data (or sample) informa-
tion, to obtain posterior information

(prior: before (sampling); posterior: after (sampling)).
This verbal description of the Bayesian approach is attractive, because

it resembles how we learn. Life involves (indeed, largely consists of) a con-
stant, ongoing process of acquiring new information and using it to update
our previous (‘prior’) information/beliefs/attitudes/policies.

To implement the Bayesian approach, we need some mathematics. The
formulae below derive from the work of the English clergyman
Thomas BAYES (1702-1761): An essay towards solving a problem in the
doctrine of chances (1763, posth.).
Recall that if A,B are events of positive probability,

P (A) > 0, P (B) > 0,

the conditional probability of A given (or knowing) B is

P (A|B) := P (A ∩B)/P (B).

Symmetrically,

P (B|A) := P (B ∩ A)/P (A) = P (A ∩B)/P (A).

Combining,
P (A ∩B) = P (A|B)P (B) = P (B|A)P (A),

or

P (B|A) = P (A|B)P (B)/P (A) (Bayes’ formula, or Bayes’ theorem).
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