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This is a (k4 1)-dimensional exponential family. Its importance is that if
the prior belongs to this family, so too does the posterior: the family is closed
under sampling. This property is of crucial importance, partly because it is
so mathematically convenient, partly because it shows up the structure of
the problem. For instance, we shall return below to two of the examples we
met in VIL.2, where the relationship between prior and likelihood can now
be seen in this light to be natural. The prior above is called the natural
conjugate family to the exponential family above.

Example 1. Bernoulli distribution. For x = 0,1,

f(z|0) =0"(1—0)" = (&)x(l —0) = exp{xlog(1 f 0) +log(1—10)}:

here k = 1, A,(0) = 1og(1 9) Bi(z) = z,C(x) = 0, D(8) = log(1 — 6).
The natural conjugate family is

f(0;01,d) = exp{a14:(0) +dD(0) + (a1, d)}
= exp{a log(&) +dlog(1 —60) + c(as,d)}
= 0(1—0)"" exp{c(as, d)},

which is Beta B(ay,d — ay) as in VIL.2.
2. Normal distribution, N(u,c?): 0 = (u,0?),

k= 2,41(0) = 1/0% Bi(z) = —32% As(0) = p/o? By(z) = z,C(z) =
0,D(8) = —3[log(2m0?) + p?/0?]. The natural conjugate family is

f(0;a1,a9,d) = exp{a1A1(0) + asA3(0) + dD(0) + c¢(ay, as,d)}

o (0%)” 2 exp{— + % - —d pro?}.
The exponent is o2 times
1 2a2,u 1 a9 CL22
—Zd(u? - = —Zdl(uy— =) — g — —=—



Writing m := ay/d,b := —a; — ax?/2d,
1 1
f(0;ay,ay,d) o< (0?)72¢ exp{—§d(u —m)?/o* —b/o?}.

For o known, this is a normal prior for p, as in VIL.2. With neither o nor u
known (both parameters), this is the natural conjugate prior to the normal
N(p, 02). More generally, one can work with (¢2)~ in place of (¢2)~2¢. Here
m,d,b (and t if present) are hyperparameters for the parameters p, 0.

6. Shrinkage [O’H| 6.42, p. 159].

In the Bayesian paradigm the posterior gives a compromise between prior
and likelihood. This ‘pulls’ the likelihood towards the prior, so ‘pulls’ a clas-
sical estimate towards a prior estimate. Similarly with several parameters. It
is thus typical of the Bayesian paradigm that estimators are less spread out
than in the classical paradigm, a phenomenon known as shrinkage. Similar
shrinkage effects occur in higher dimensions — the James-Stein phenomenon.

7. Invariance and Jeffreys priors.

Suppose we work with a parameter 6, with information per reading I(0) =
E[(0'(0)*) = [((log f)e)*f(F). If we reparametrise to ¢ := g¢(f), then as
9/06 = (40/d6)(9/99),

I(¢) = (df/d)*1(0).

The idea of choosing a prior which is large where the information is large
is very attractive (and reminiscent of maximum-likelihood estimation!). Jef-
freys suggested choosing a prior of the form

— the square root to make the prior invariant under reparametrisation:

m(0)de o /T()dd = /T(0)d0 < w(0)d0 :  w(¢)de = m(6)db

(both sides integrate to 1, so we can take equality here). There is an ex-
tension to higher dimensions, using the Fisher information matrix and the
square root of the modulus of its determinant.

Bayesian procedures are in general not invariant under reparametrisa-
tion! This can be seen as a drawback, but Bayesians argue that one needs
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to incorporate a loss function (or utility function), and one should seek a
parametrisation that suits this loss function.

Note. Sir Harold JEFFREYS (1891-1989) was primarily a geophysicist, and
wrote an influential book The Earth: Its Origin, History and Physical Con-
stitution, 1924'. He was also a pioneer of Bayesian statistics, and wrote an
early book on it, Theory of probability (1st ed. 1939, 2nd ed. 1960, 3rd
ed. 1983). He also wrote (with his wife) ‘Jeffreys and Jeffreys’, Methods of
mathematical physics, CUP, 1946.

8. The Bayes linear estimator.
If d(x) is a linear function, a + V'z, where z = z(x) and b are vectors, the
quadratic loss is

D = E[a+Vz—0)?
= Ela® +2ab'z + V' 22'b — 2a6 — 20’20 + 67
= a®+2alEz + bV E(22)b — 2aE0 — 26 E(20) + E(0%).
Add and subtract [E(0)]?, (VEz)? = VEzEZ'b and 20 EzE(. Write V :=

var z = E(z2') — EzEZ?' for the covariance matrix of z, ¢ := cov(0,z) =
E(20) — EzE0 for the covariance vector between 6 and the vector z.

D = (a+bEz— E0)*+V(varz)b — 20 cov(z, 0) + vard :

D= (a+VEz— E0)?+bVb—2c+vard. (1)
Write b* := V~le, D* := var(f) — ¢V ~tc. Then this becomes

D=(a+VEz—E)?+(b—0b)V(b—b)+ D" (%)

(the quadratic terms check as b*TVbx = cTV=VV~le = 'V ~1¢, the linear
terms as ¢ = Vb*).

The third term on the right in (%) does not involve a, b, while the first
two are non-negative (the first is a square, the second a quadratic form with
matrix V', non-negative definite as V' is a covariance matrix). So the expected
quadratic loss D is minimised by choosing b = b*, a = —b*'Ez + Ef. Then

d(z) = E0 +cV ' (2 — Ez), c:=cov(z,0), V :=wvar(z).

1 Jeffreys was the first to suggest that the earth’s core is liquid — but he was a strong
opponent of continental drift!



This gives the Bayes linear estimator of 6 based on data z = z(x). This is
the best approximation to the posterior mean (in the sense of mean-square
error) among the class of linear estimators (in z = z(x)).

Distributional assumptions.

The Bayes linear estimator depends only on first and second moments:
Ef, Ez, ¢ = cov(z,0), V = var(z). So we do not need to know the full
likelihood, just the first and second moments of (0, z(x)), the parameter and
the function z in which we want the estimator to be linear.

Application. We have met this in the Kalman filter (V.11).

9. Bayesian solution of the equity premium puzzle.

Following Markowitz (1.5), we should diversify our financial savings into
a range of assets in our portfolio — including cash (invested risklessly — e.g.,
by buying Government bonds, or ‘gilts’, or putting it in the bank or building
society — which we suppose riskless here, discounting such disasters as the
Icelandic banking crisis, Northern Rock, RBS etc.) and risky stock. There
is no point in taking risk unless we are paid for it, so there will be an excess
return — equity premium — g —r of the risky stock (return p) over the riskless
cash (return ), to be compared with the volatility o of the risky stock via
the Sharpe ratio (or market price of risk) A\ :== (u — r)/o). Historical data
show that the observed excess return seems difficult to explain.

A Bayesian solution to this ‘equity premium puzzle’ (the term is due to

Mehra & Prescott (1985)) has been put forward by Jobert, Platania and
Rogers: there is no equity premium puzzle, if one uses a Bayesian analysis
to reflect fully one’s uncertainty in modelling this situation. See
[JPR] A. JOBERT, A. PLATANIA & L. C. G. ROGERS, A Bayesian solution
to the equity premium puzzle. Preprint, Cambridge (available from Chris
Rogers’ homepage: Cambridge University, Statistical Laboratory).
The Twenties Example [JPR]. One observes daily prices of a stock for T
years, with an annual return rate of 20% and an annual volatility of 20%.
How large must T be to give confidence intervals of +1% for (i) the volatility,
(i) the mean? Answers: (i) about 11; (ii) about 1,550!!

This illustrates what is called mean blur; see e.g.

D. G. LUENBERGER, Investment Science, OUP, 1997.
Rough explanation: for the mean, only the starting and final values matter
(so effective sample size is 2); for the volatility, everything matters.

For non-Bayesian approaches, see e.g. Maenhout, Rev. Fin. Studies
(2004), Barillas, Hansen & Sargent, J. Econ. Th. (2009).
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