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3. Likelihood Ratio Tests
We turn now to the general case: composite H0 v. composite H1. We may

not be able to find UMP (best) tests. Instead, we seek a general procedure
for finding good tests.

Let θ be a parameter, H0 be a null hypothesis – a set of parameter values
T0, such that H0 is true iff θ ∈ T0, and similarly for H1, T1. It is technically
more convenient to take H1 more general than H0, and we can do this by
replacing H1 by ”H1 or H0”. Then T0 ⊂ T1.

With L the likelihood, we write

L0 := sup
θ∈T0

L(θ), L1 := sup
θ∈T1

L(θ).

As with MLE: the size of L1 is a measure of how well the data supports H1.
So to test H0 v. H1, we use test statistic the likelihood ratio (LR) statistic,

λ := L0/L1,

and critical region: reject H0 if λ is too small.
Since T0 ⊂ T1, L0 ≤ L1, so

0 ≤ λ ≤ 1.

In standard examples, we may be able to find the distribution of λ. But
in general this is hard to find, and we have to rely instead on large-sample
asymptotics.

Theorem (S. S. WILKS, 1938). If θ is a one-dimensional parameter,
and λ is the likelihood-ratio statistic for testing H0 : θ = θ0 v. H1 : θ
unrestricted, then under the usual regularity conditions for MLEs (I.3),

−2 log λ → χ2(1) (n → ∞).

Proof. λ = L0/L1, where L0 = L(X; θ0), L1 = L(X; θ̂), with θ̂ the MLE
(I.1). So

log λ = ℓ(θ0)− ℓ(θ̂) = ℓ0 − ℓ1,
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say. But

ℓ(θ0) = ℓ(θ̂) + (θ0 − θ̂)ℓ′(θ̂) +
1

2
(θ0 − θ̂)ℓ′′(θ∗),

with θ∗ between θ0 and θ̂, by Taylor’s Theorem. As θ̂ is the MLE, ℓ′(θ̂) = 0.
So

log λ = ℓ0 − ℓ1 =
1

2
(θ0 − θ̂)2ℓ′′(θ∗), −2 log λ = (θ0 − θ̂)2[−ℓ′′(θ∗)].

By consistency of the MLE (I.3), θ̂ → θ0 a.s. as n → ∞. So also θ∗ → θ0 (as
θ∗ is between θ0 and θ̂). So

−ℓ′′(θ∗) = −ℓ′′(X; θ∗) = n.
1

n

n∑
1

[−ℓ′′(Xi; θ
∗)]

∼ nE[−ℓ′′(Xi; θ
∗)] (LLN)

= nI(θ∗) (definition of information per reading)

∼ nI(θ0) (θ∗ → θ0).

By I.3,

(θ̂ − θ0)
√
nI(θ0) → Φ, (θ̂ − θ0)

2.nI(θ0) → Φ2 = χ2(1),

using Φ2 as shorthand for ‘the distribution of the square of a standard normal
random variable’. So

−2 log λ → χ2(1). //

Higher Dimensions. If θ = (θr, θs) is a vector parameter, with
θr an r-dimensional parameter of interest,
θs an s-dimensional nuisance parameter,

to test H0 : θr = θr,0 (which is composite unless s = 0) v. H1 : θr
unrestricted. Similar use of the large-sample theory of MLEs for vector pa-
rameters (which involves Fisher’s information matrix) gives

Theorem (Wilks, 1938). Under the usual regularity conditions,

−2 log λ → χ2(r) (n → ∞).

Note that the dimensionality s of the nuisance parameter plays no role:
what counts is r, the dimension of the parameter of interest (i.e., the differ-
ence in dimension between H1 and H0). (We think here of a fully specified
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parameter, as in H0, as a point – of dimension 0, and of H1 of dimension
r, like θr. There need not be any vector-space structure here. Recall that
degrees of freedom (df) correspond to effective sample size, and that for every
parameter we estimate we ‘use up’ one df, so reducing the effective sample
size by the number of parameters we estimate, so reducing also the available
information. For background, see e.g. [BF], Notes 3.8, 3.9.)

Example: Normal means N(µ, σ2), σ unknown.
Here µ is the parameter of interest, σ is a nuisance parameter – a pa-

rameter that appears in the model, but not in the hypothesis we wish to
test.

H0 : µ = µ0 v. H1 : µ unrestricted.

L =
1

σn(2π)n/2
. exp{−1

2

n∑
1

(xi − µ)2/σ2},

L0 =
1

σn(2π)n/2
. exp{−1

2

n∑
1

(xi − µ0)
2/σ2} =

1

σn(2π)n/2
. exp{−1

2
nS2

0/σ
2},

in an obvious notation. The MLEs under H1 are µ̂ = X̄, σ̂2 = S2, as before,
and under H0, we obtain as before σ = S0. So

L1 =
e−

1
2
n

Sn(2π)
1
2
n
; L0 =

e−
1
2
n

Sn
0 (2π)

1
2
n
.

So
λ := L0/L1 = Sn/Sn

0 .

Now

nS2
0 =

n∑
1

(Xi − µ0)
2 =

∑
[(Xi − X̄) + (X̄ − µ0)]

2

=
∑

(Xi − X̄)2 + n(X̄ − µ0)
2 = nS2 + n(X̄ − µ0)

2

(as
∑

(Xi − X̄) = 0):
S2
0

S2
= 1 +

(X̄ − µ0)
2

S2
.

But t := (X̄ − µ0)
√
n− 1/S has the Student t-distribution t(n − 1) with n

df under H0, so
S2
0/S

2 = 1 + t2/(n− 1).
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The LR test is: reject if
λ = (S/S0)

n too small;
S2
0/S

2 = 1 + t2/(n− 1) too big;
t2 too big: |t| too big, which is the Student t-test:
The LR test here is the Student t-test.

2. Normal variances N(µ, σ2), µ unknown (a nuisance parameter). Test

H0 : σ = σ0 v. H1 : σ > σ0.

Under H0, ℓ = const− n log σ0 − 1
2

∑
(Xi − µ)2/σ2

0.
∂ℓ/∂µ = 0:

∑n
1 (Xi − µ) = 0:

µ̂ =
1

n

n∑
1

Xi = X̄.

So

L0 =
1

σn
0 (2π)

n/2
. exp{−1

2

n∑
1

(xi − µ0)
2/σ2

0} =
1

σn
0 (2π)

n/2
. exp{−1

2
nS2/σ2

0}.

Under H1, ℓ = const−n log σ− 1
2

∑
(Xi−µ)2/σ2. As above, the maximising

value for µ is X̄, and as
∑n

1 (Xi − X̄)2 = nS2,

ℓ = const− n log σ − 1

2

∑
(Xi − µ)2/σ2 = const− n log σ − 1

2
nS2/σ2.

∂/∂σ = 0: −n/σ + nS2/σ3 = 0: σ2 = S2.
There are two cases: I. σ0 < S. II. σ0 ≥ S.
In Case I, S belongs to the region σ > σ0 defining H1, so the maximum

over H1 is attained at S, giving as before

L1 =
e−

1
2
n

Sn(2π)
1
2
n
. So λ =

L0

L1

=
Sn

Sn
0

exp
{
−1

2
n
[S2

σ2
0

− 1
]}

. (Case I).

In Case II, the maximum of L is attained at S (L increases up to S, then
decreases), so its restricted maximum in the range σ ≥ σ0 ≥ S is attained at
σ0, the nearest point to the overall maximum S. Then

L1 =
1

σn
0 (2π)

n/2
. exp{−1

2

n∑
1

(xi − µ0)
2/σ2

0} = L) : λ = L0/L1 = 1

(Case II).
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Comparing, λ is a function of T := S/σ0:

λ = 1 if T ≤ 1 (Case II), T n exp{−1

2
n[T 2 − 1]} if T ≥ 1 (Case I).

Now f(x) := xn exp{−1
2
n[x2 − 1]} takes its maximum on (0,∞) at x = 1,

where it takes the value 1 (check by calculus). So (check by graphing λ
against T !) the LR test is:

reject if λ too small, i.e. T too big, i.e. S too big – as expected.
Under H0, nS

2/σ2
0 is χ2(n − 1). If cα is the upper α-point of χ2(n − 1),

reject if nS2/σ2
0 ≥ cα, i.e., reject if S ≥ σ2

0cα/n.
Similarly if H1 is σ < σ1 and dα is the lower α-point: reject if S2 ≤

σ2
0dα/n.

Testing Linear Hypotheses
We give a brief overview; for details, see Ch. IV below and e.g. [BF] Ch.

6.
In Regression (Ch. IV below) it is typically the case that one has a sample

of size n – the larger the better – and seeks the best explanation of the data
obtainable by projection on some suitable p-dimensional subspace. Here p is
the number of parameters (in the range 2 to 6, typically), so p is much smaller
than n: p << n. Having chosen the largest p we are prepared to consider,
we might test the hypothesis that p could be reduced – by dropping the last
parameter, in a set of nested models. With β the p-vector of parameters,
such hypotheses can be formulated as linear hypotheses of the form Bβ = c,
with B a k × p matrix and c a k-vector of constants. We compare the mini-
mum of the relevant sum-of-squares statistic with and without the constraint
Bβ = c. The null hypothesis H0 is that the constraint Bβ = c holds. We
reject H0 if the improvement to the fit when we drop it is too big. It turns
out that the relevant test statistic has an F -distribution, and we reject H0 if
this F -statistic is too big (Kolodzieczyk’s theorem, 1935).

One important instance of all this is Time Series (Ch. V). We have
autoregressive models AR(p); we formulate, and test, hypotheses on the
size of p needed. Similarly for moving average models MA(q), ARMA
models ARMA(p, q), and for their extensions (ARIMA, integrated ARMA;
SARIMA, seasonal ARIMA). Similarly for stochastic volatility models, such
as autoregressive conditionally heteroscedastic modelsARCH(p), generalised
ARCH GARCH(p, q), etc.; see e.g. [BF] 9.4.
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III. MULTIVARIATE ANALYSIS

1. Preliminaries: Matrix Theory.
Modern Algebra splits into two main parts: Groups, Rings and Fields on

the one hand, and Linear Algebra on the other. Linear Algebra deals with lin-
ear transformations between vector spaces. We confine attention here to the
finite-dimensional case; the infinite-dimensional case needs Functional Anal-
ysis and is harder. Broadly, Parametric Statistics can be handled in finitely
many dimensions, Non-Parametric Statistics (Ch. VI) needs infinitely many.

Determinants can be traced back to Leibniz (1684, unpublished in his
lifetime), Cramer (below) and others; the term first appears in Gauss’ the-
sis Disquisitiones arithmeticae in 1801. Although matrices logically precede
determinants, they were developed after them. The term is due to J. J.
SYLVESTER (1814-1897) in 1850; the theory largely stems from a paper
of Arthur CAYLEY (1821-1895) in 1858 (this contains the Cayley-Hamilton
Theorem, following work by Hamilton in 1853).

Given a finite-dimensional vector space V , we can always choose a basis
(a maximal set of linearly independent vectors). All such bases contain the
same number of vectors; if this is n, the vector space has dimension n.

Given two finite-dimensional vector spaces and a linear transformation α
between the two, choice of bases (e1, . . . , em) and (f1, . . . , fn) determines a
matrix A = (aij) by

eiα =
n∑

j=1

aijfj (i = 1, . . . ,m).

We write

A =

 a11 . . . a1n
...

...
am1 . . . amn

 ,

or A = (aij) more briefly. The aij are called the elements of the matrix; we
write A (m× n) for A (m rows, n columns).

Matrices may be subjected to various operations:
1. Matrix addition. If A = (aij), B = (bij) have the same size, then

A±B := (aij ± bij)

(this represents α± β if α, β are the underlying linear transformations).
2. Scalar multiplication. If A = (aij) and c is a scalar (real, unless we specify
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complex), then the matrix
cA := (caij)

represents cα.
3. Matrix multiplication. If A is m× n, B is n× p, then C := AB is m× p,
where C = (cij) and

cij :=
n∑

k=1

aikbkj

(this represents the product, or composition, αβ or x 7→ xαβ).
Note. Matrix multiplication is non-commutative! – AB ̸= BA in general,
even when both are defined (which can only happen for A, B square of the
same size).
Partitioning.

We may partition a matrix A in various ways. for instance, A as above
partitions as

A =

(
A11 A12

A21 A22

)
,

where A11 is r×s, A12 is r×(n−s), A21 is (m−r)×s, A22 is (m−r)×(n−s),
etc. In the same way, A may be partitioned as
(i) a column of its rows; (ii) a row of its columns.
Rank.

The maximal number of linearly independent rows of A is always the
same as the maximal number of independent columns. This number, r, is
called the rank of A. When r = min(m,n) is as big as it could be, the matrix
A has full rank.
Inverses.

When a square matrix A (n×n) has full rank n, the linear transformation
α : V → V that it represents is invertible, and so has an inverse map α−1 :
V → V such that αα−1 = α−1α = i, the identity map, and α−1 is also a
linear transformation. The matrix representing α−1 is called A−1, the inverse
matrix of A:

AA−1 = A−1A = I,

the identity matrix of size n: I = (δij) (δij = 1 if i = j, 0 otherwise – the
Kronecker delta).
Transpose.

If A = (aij), the transpose is A′, or AT := (aji).
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Note that, when all the matrices are defined,

(AB)−1 = B−1A−1

(as this gives (AB)(AB)−1 = ABB−1A−1 = AA−1 = I, and similarly
(AB)−1(AB) = I, as required), and

(AB)T = BTAT

(the (i, j) element is
∑

k(B
T )ik(A

T )kj =
∑

k bkiajk =
∑

k ajkbki = (AB)ji).
Determinants.

There are n! permutations σ of the set

Nn := {1, 2, . . . , n}

– bijections σ : Nn → Nn. Each permutation may be decomposed into a
product of transpositions (interchanges of two elements), and the parity of
the number of transpositions in any such decomposition is always the same.
Call σ odd or even according as this number is odd or even. Write

sgn σ := 1 if σ is even, −1 if σ is odd

for the sign or signum of σ. For A a square matrix of size n, the function

det A, or |A|, :=
∑
σ

(−1) sgn σa1,σ(1)a2,σ(2) . . . an,σ(n),

where the summation extends over all n! permutations, is called the deter-
minant of A, det A or |A|.
Properties.
1. |AT | = |A|.
Proof. If σ−1 is the inverse permutation to σ, σ and σ−1 have the same parity,
so the sums for their determinants have the same terms, in a different order.
2. If two rows (or columns) of A coincide, |A| = 0.
Proof. Interchanging two rows changes the sign of |A| (extra transposition,
which changes the parity), but leaves A and so |A| unaltered (as the two
rows coincide). So |A| = −|A|, giving |A| = 0.
3. |A| depends linearly on each row (or column) (det is a multilinear func-
tion, and this area is called Multilinear Algebra).
4. If A is n× n, |A| = 0 iff A has rank r < n. For then, some row is a linear
combination of others. Expanding by this row gives sum of determinants
with two rows identical, giving 0.
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