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5. Multiplication Theorem for Determinants.
If A, B are n× n (so AB, and BA, are defined),

|AB| = |A|.|B|.

Proof. We can display a matrix A as a row of its columns, A = [a1, . . . , an]
(or as a column of its rows). The kth column of the matrix product C = AB
is then

ck = b1ka1 + . . .+ bnkan.

For, the ith element of the kth column of C is

cik =
∑
j

aijbjk =
∑
j

bjk[aj]i = [
∑
j

bjkaj]i.

This is the ith element of the above vector equation, on both sides. Then

detC = detAB = det[b11a1 + . . .+ bn1an, . . . , b1na1 + . . .+ bnnan].

Expand the RHS by the first column. We get a sum of the form∑
j1

bj1,1det[. . .].

Expand each det here by the second column. We get a double sum, of the
form ∑

j1,j2

bj1,1bj2,1det[. . .],

and so on, finally getting ∑
j1,...,jn

bj1,1 . . . bjn,1det[. . .].

Each matrix whose det we are taking here is a row of columns of A. Each
such det with two columns the same vanishes. So we can reduce the ‘big’
sum (nn terms) to a smaller sum with all columns different (n! terms). Then
we have a permutation of the columns, σ say, giving

detC =
∑
σ

bσ(1),1 . . . bσ(n),ndet[aσ(1), . . . , aσ(n)].
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Putting the columns here in their natural order,

detC =
∑
σ

bσ(1),1 . . . bσ(n),n.(−1)sgn(σ)det[a1, . . . , an].

The determinant here is detA, so we can take it out. This leaves detB, so

detC = det(AB) = detA.detB. //

6. Inverses again.
If A is n × n, the (i, j) minor is the determinant of the (n − 1) × (n −

1) submatrix obtained by deleting the ith row and jth column. The (i, j)
cofactor, or signed minor Aij, is the (i, j) minor times (−)i+j (the signs follow
a chessboard or chequerboard pattern, with + in the top left-hand corner),

The matrix B = (bij), where

bij := Aji/|A|,

is the inverse matrix A−1 of A, defined iff |A| ̸= 0 (A is called singular
if |A| = 0, non-singular otherwise (thus a square matrix has a non-zero
determinant iff it is non-singular), and

AA−1 = A−1A = I :

Theorem (Matrix inverse).

inverse = transposed matrix of cofactors over determinant.

Proof. With B as above, C := AB = (cij),

cij =
∑
k

aikbkj =
∑
k

aik.Ajk/|A|.

If i = j, the RHS is 1 (expansion of |A| by its ith row). If not, the RHS
is 0 (expansion of the determinant of a matrix with two identical rows). So
cij = δij, so C = AB = I. Similarly, BA = I. //

Solution of linear equations.
If A is n× n, the linear equations

Ax = b
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possess a unique solution x iff A is non-singular (A−1 exists), and then

x = A−1b.

If A is singular (A has rank r < n), then either there is no solution (the equa-
tions are inconsistent), or there are infinitely many solutions (some equations
are redundant, and one can give some of the elements xi arbitrary values and
solve for the rest – consistency but non-uniqueness). What decides between
these two cases is the rank of the augmented matrix (A, b) obtained by ad-
joining the vector b as a final column. If rank(A, b) = rank(A), Ax = b is
consistent; if rank(A, b) > rank(A), Ax = b is inconsistent.
Orthogonal Matrices.

A square matrix A is orthogonal if

AT = A−1,

or equivalently, if
ATA = AAT = I.

Then |ATA| = |AT ||A| = |A|.|A| = |I| = 1, |A|2 = 1, |A| = ±1 (we take the
+ sign).

If A = (a1, . . . , an) (row of column vectors, so AT is the column of row-
vectors aTi ) is orthogonal, A

TA = I, i.e. aT1
...
aTn

 (a1, . . . , an) = I,

aTi aj = δij: the columns of A are orthogonal to each other, and similarly the
rows are orthogonal to each other.
Note. If A, B are orthogonal, so is AB, since (AB)TAB = BTATAB =
BTB = I.
Generalised inverses.

The theory above partially extends to non-square matrices, and matrices
not of full rank. For A m× n, call A− a generalised inverse if

AA−A = A.

We quote:
1. Generalised inverses always exist (but need not be unique),
2. If the linear equation

Ax = b
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is consistent (has at least one solution), then a particular solution is

x = A−b.

Eigenvalues and eigenvectors.
If A is square, and

Ax = λx (x ̸= 0),

λ is called an eigenvalue (latent value, characteristic value, e-value) of A,
x an eigenvector (latent vector, characteristic vector, e-vector) (determined
only to within a non-zero scalar factor c, as A(cx) = λ(cx)). Then

(A− λI)x = 0

has non-zero solutions x, so infinitely many solutions cx, so A−λI is singular:

|A− λI| = 0.

If A is n × n, this is a polynomial equation of degree n in λ. By the Fun-
damental Theorem of Algebra (see e.g. M2PM3 L19-L20), there are n roots
λ1, . . . , λn (possibly complex, counted according to multiplicity).

A matrix A is singular iff the linear equation Ax = 0 has some non-zero
solution x. This is the condition for 0 to be an eigenvalue:

a matrix is singular iff 0 is an eigenvalue.

Since the coefficient of λn in the polynomial p(λ) := |A − λI| is (−)n, p(λ)
factorises as

p(λ) := |A− λI| =
n∏
1

(λ− λi).

Put λ = 0:

|A| =
n∏
1

λi : the determinant is the product of the eigenvalues.

Match the coefficients of (−λ)n−1: in the RHS, we get a λi term for each i, so
the coefficient is

∑
i λi, the sum of the eigenvalues. In the LHS, we get an aii

term for each i, so the coefficient is
∑

aii, the sum of the diagonal elements
of A, which is called the trace of A. Comparing:

tr A =
∑
i

λi : the trace is the sum of the eigenvalues.
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Properties.
1. If A is symmetric, eigenvectors xi, xj corresponding to distinct eigenvalues
λi, λj are orthogonal.
Proof. Axi = λixi, so xT

i A
T = λix

T
i , or xT

i A = λix
T
i as A is symmetric.

So xT
i Axj = λix

T
i xj. Interchanging i and j and transposing (or arguing as

above), xT
i Axj = λjx

T
i xj. Subtract: (λi − λj)x

T
i xj = 0, so xT

i xj = 0 as
λi ̸= λj. //
2. If A is real and symmetric, its eigenvalues are real. For Ax = λx; tak-
ing complex conjugates gives Ax = λx as A is real. Transposing, as A is
symmetric, this gives xTA = λxT . So xTAx = λxTx. Also Ax = λx, so
xTAx = λxTx. Subtract: 0 = (λ− λ)xTx. But if x has jth element xj + iyj,

xTx =
∑

j(x
2
j + y2j ), positive as x is non-zero. So λ

T
= λ, and λ is real. //

Note. The same proof shows that if A is anti-symmetric – AT = −A – the
eigenvalues are purely imaginary.
3. If A is real and orthogonal, its eigenvalues are of unit modulus: |λ| = 1.
Proof. If Ax = λx, Ax = λx as A is real, so xTAT = xTλ. So xTATAx =
xTλ.λx, which as A is orthogonal is xTx = λλ.xTx. Divide by xTx =

∑
i x

2
i >

0 (as x ̸= 0): λ.λ = |λ|2 = 1. //
4. If C, A are similar (C = B−1AB), A has eigenvalues λ and eigenvectors
x – then C has eigenvalues λ and eigenvectors B−1x .
Proof. |A−λI| = 0, so |C−λI| = |B−1AB−λB−1IB| = |B−1||A−λI||B| = 0.
So C has eigenvalues λ. C(B−1x) = (B−1AB)(B−1x) = B−1Ax = B−1λx =
λ(B−1x), so C has eigenvectors B−1x. //
Corollary. Similar matrices have the same determinant and trace.
Proof. These are the product and sum of the eigenvalues. //
5. If A is non-singular, the eigenvalues of A−1 are the reciprocals λ−1 of the
eigenvalues λ of A, and the eigenvectors are the same.
Proof. Ax = λx, so x = A−1λx, so A−1x = λ−1x. //
6. A is singular iff it has an e-value 0. For, the determinant is the product
of the e-values.

Theorem (Spectral Decomposition, or Jordan Decomposition). A
symmetric matrix A can be decomposed as

A = ΓΛΓT =
∑

λiγiγ
T
i ,

with Λ = diag(λi) the diagonal matrix of eigenvalues λi, Γ = (γ1, . . . , γn) an
orthogonal matrix with columns γi standardised eigenvectors (γT

i γi = 1).
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We give a more general result (SVD) below. As a corollary, one can show
that for A symmetric, its rank r(A) is the number of non-zero eigenvalues.
Square root of a matrix.

If A is symmetric, with decomposition as above, and we define Λ1/2 :=
diag(λ

1/2
i ), then putting

A1/2 := ΓΛ1/2ΓT ,

A1/2A1/2 = ΓΛ1/2ΓTΓΛ1/2ΓT

= ΓΛ1/2Λ1/2ΓT (Λ is orthogonal)

= ΓΛΓT (Λ = diag(λi))

= A.

We call A1/2 the square root of A. If also A is non-singular (so no eigenvalue
is 0, so each λ−1

i is defined), write

A−1/2 := ΓΛ−1/2ΓT .

A similar argument shows that

A−1/2A−1/2 = A−1,

so we call A−1/2 the square root of A−1, and the inverse square root of A.
Positive definite matrices.

If A (n × n) is real and symmetric, A is positive definite (respectively
non-negative definite) if

xTAx > 0 (respectively ≥ 0) for all non-zero x.

Here xTAx =
∑n

i,j=1 xiaijxj =
∑n

i=1 aiix
2
i +

∑
i̸=j aijxixj is a quadratic form

in the n variables x1, . . . , xn (one can replace
∑

i̸=j by 2
∑

i<j).
By the Spectral Decomposition Theorem,

xTAx = xTΓΛΓTx = yTΛy (y := ΓTx)

=
∑

λiy
2
i .

So A is non-negative definite (positive definite) iff
∑

i λiy
2
i ≥ 0 for all y (> 0

for all non-zero y) iff all λi ≥ 0 (> 0):
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Proposition. A real symmetric matrix A is non-negative definite (positive
definite) iff all its eigenvalues are non-negative (positive).

Matrices of the form ATA are common in Statistics (e.g., in Regression).
1. ATA is always non-negative definite, since xTATAx = (Ax)T (Ax) =
yTy =

∑
y2i ≥ 0, with y := Ax. So all eigenvalues of ATA are non-negative.

2. ATA is positive definite iff all eigenvalues are positive iff ATA is non-
singular, and one can show this happens iff A has full rank.
3. If N(A) is the null space of A (the vector space of all x with Ax = 0),
N(A) = N(ATA).
4. ATA, AT and A have the same rank.

2. Singular-values decomposition (SVD).
The following algebraic result is extremely important in Statistics, and

in Numerical Analysis. I used [HJ] 3.0, 3.1, [GvL] 2.5; one reference to a
standard Linear Algebra book is
S. ROMAN, Advanced linear algebra, 3rd ed., Springer, 2008 (or 2nd ed. –
not in 1st ed.).
For a statistical treatment, see e.g. Krzanowski [K] (theory, Section 4.1, ap-
plications, Ch. 4), or
[R] C. R. RAO, Linear statistical inference and its applications, 2nd ed., Wi-
ley, (1973) (1st ed. 1965), 1c(v).
For proof, see there, or SMF 2012 (on course website).

Theorem (Singular-Values Decomposition, SVD). If A (n × p) has
rank r, A can be written

A = ULV T ,

where U (n × r) and V (p × r) are column-orthogonal (UTU = V TV = Ir)
and L (r × r) is a diagonal matrix with positive elements, and

A =
r∑

i=1

λiuiv
T
i ,

where
(i) the λi are the square roots of the positive eigenvalues of A

TA (or AAT ) –
the singular values;
(ii) the vectors ui, vi are eigenvectors of AAT and ATA – the left and right
singular vectors.
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(For A square and symmetric, this reduces to the Spectral Decomposition).
Eckart-Young Theorem.

The summands uiv
T
i are of rank one (indeed, the general rank-one matrix

is of this form). It was shown by C. H. ECKART (1902-73) and G. YOUNG
in 1936 that, if the singular values are ranked in order of decreasing size,
retaining the first k terms in SVD gives the best approximation (in the sense
of a suitable matrix norm – the Frobenius norm) to A by a matrix of rank k.
The statistical importance of this was studied by I. J. GOOD (1916-2009) in
1969.
Generalised Inverses and SVD.

Recall that the generalised inverse A− of A satisfies AA−A = A. If A has
SVD A = ULV T , one can check that

A− := V L−1UT

is a generalised inverse of A.
Numerical stability.

Part of the practical importance of SVD lies in the fact that it has good
numerical stability properties. Small perturbations of a matrix cause only
small perturbations of its SVD; thus round-off error etc. has only a limited
effect.

3. Statistical setting.
Usually in Statistics we have univariate data x = (x1, . . . , xn), and have to

analyse it. Sometimes, however, each observation contains several different
readings (measurements, for example) on the same ‘individual’, or object.
We then need a two-suffix notation just to describe the data, and so we use
matrices throughout.
Notation. We assume that p variables are measured on each of n objects.
We assemble the np readings into a data matrix

X =

 x11 . . . x1p
...

...
xn1 . . . xnp

 ,

where xij is the observation on the jth variable measured on the ith reading.
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