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5. Multiplication Theorem for Determinants.
If A, B are n X n (so AB, and BA, are defined),

|AB| = |A].|B|.

Proof. We can display a matrix A as a row of its columns, A = [a,...,a,]
(or as a column of its rows). The kth column of the matrix product C' = AB
is then

Cr — blkal + ...+ bnkan.

For, the ith element of the kth column of C is
ciw =Y agb =Y blajli = > bayl.
J J J

This is the ith element of the above vector equation, on both sides. Then
detC' = detAB = det[b11a1 + ...+ bnlan, c. ,blnal + ...+ b,man]

Expand the RHS by the first column. We get a sum of the form
Z bjljldet[. . ]
Ji
Expand each det here by the second column. We get a double sum, of the
form
Z bjhlbjz,ldet[. . .],

Ji,J2

and so on, finally getting

Each matrix whose det we are taking here is a row of columns of A. Each
such det with two columns the same vanishes. So we can reduce the ‘big’
sum (n" terms) to a smaller sum with all columns different (n! terms). Then
we have a permutation of the columns, o say, giving

detC' = Z ba(1)71 SN bg(n)mdet[ag(l), c. ,ag(n)].
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Putting the columns here in their natural order,

detC = " by)1 - - bomyn-(—1)"Odetlay, . .., a,).

The determinant here is detA, so we can take it out. This leaves detB, so
detC = det(AB) = detA.detB. //

6. Inverses again.
If Aisn xmn, the (i,7) minor is the determinant of the (n — 1) x (n —
1) submatrix obtained by deleting the ith row and jth column. The (3, j)
cofactor, or signed minor A;;, is the (i, j) minor times (—)"*7 (the signs follow
a chessboard or chequerboard pattern, with + in the top left-hand corner),
The matrix B = (b;;), where

bij = Aji/|Al,

is the inverse matriz A~' of A, defined iff |A| # 0 (A is called singular
if |[A| = 0, non-singular otherwise (thus a square matrix has a non-zero
determinant iff it is non-singular), and

AAT T =ATA=1T:
Theorem (Matrix inverse).

inverse = transposed matrix of cofactors over determinant.

Proof. With B as above, C' := AB = (c¢;;),
Cz’j = Zaikbkj = ZamA]k/|A|
k k

If i = j, the RHS is 1 (expansion of |A| by its ith row). If not, the RHS
is 0 (expansion of the determinant of a matrix with two identical rows). So
Cij = (5”-, soC=AB=1. Similarly, BA=1. //

Solution of linear equations.
If A is n x n, the linear equations

Axr =10



1

possess a unique solution x iff A is non-singular (A™" exists), and then

x=A"1h.

If A is singular (A has rank r < n), then either there is no solution (the equa-
tions are inconsistent), or there are infinitely many solutions (some equations
are redundant, and one can give some of the elements x; arbitrary values and
solve for the rest — consistency but non-uniqueness). What decides between
these two cases is the rank of the augmented matrix (A,b) obtained by ad-
joining the vector b as a final column. If rank(A,b) = rank(A), Az = b is
consistent; if rank(A,b) > rank(A), Ax = b is inconsistent.

Orthogonal Matrices.

A square matrix A is orthogonal if

AT =AY,

or equivalently, if
ATA = AAT = 1.

Then |ATA| = |AT||A] = |A]|A] = |I| = 1, |A]? = 1, |A| = &1 (we take the
+ sign).

If A= (ay,...,a,) (row of column vectors, so AT is the column of row-
vectors al ) is orthogonal, ATA =1, i.e.

af
: (a1,...,an) =1,

y
ala; = &;;: the columns of A are orthogonal to each other, and similarly the
rows are orthogonal to each other.

Note. If A, B are orthogonal, so is AB, since (AB)TAB = BTATAB =
BTB =1.
Generalised inverses.

The theory above partially extends to non-square matrices, and matrices
not of full rank. For A m x n, call A~ a generalised inverse if

AATA=A.

We quote:
1. Generalised inverses always exist (but need not be unique),
2. If the linear equation

Axr =10



is consistent (has at least one solution), then a particular solution is
xr=A"b.

FEigenvalues and eigenvectors.
If A is square, and
Az = \z (x #0),

A is called an eigenvalue (latent value, characteristic value, e-value) of A,
x an eigenvector (latent vector, characteristic vector, e-vector) (determined
only to within a non-zero scalar factor ¢, as A(cx) = A(cz)). Then

(A= X)x =0
has non-zero solutions x, so infinitely many solutions cx, so A—AI is singular:
|A— A =0.

If A is n x n, this is a polynomial equation of degree n in A\. By the Fun-
damental Theorem of Algebra (see e.g. M2PM3 L.19-1.20), there are n roots
A1y .-y Ay (possibly complex, counted according to multiplicity).

A matrix A is singular iff the linear equation Ax = 0 has some non-zero
solution x. This is the condition for 0 to be an eigenvalue:

a matriz is singular iff 0 is an eigenvalue.

Since the coefficient of A" in the polynomial p(\) := |A — M| is (—)", p(\)

factorises as
n

P = 4= A1 = [T = w0

1

Put A=0:

|A| = H A the determinant is the product of the eigenvalues.
1

Match the coefficients of (—X)"~!: in the RHS, we get a \; term for each i, so
the coefficient is ), A;, the sum of the eigenvalues. In the LHS, we get an a;;
term for each i, so the coefficient is ) a;;, the sum of the diagonal elements
of A, which is called the trace of A. Comparing:

tr A = Z A the trace is the sum of the eigenvalues.



Properties.

1. If Ais symmetric, eigenvectors x;, x; corresponding to distinct eigenvalues
Ai, Aj are orthogonal.

Proof. Ax; = Ny, so T AT = \al') or aTA = Mol as A is symmetric.
So #l Az; = Nazlx;. Interchanging i and j and transposing (or arguing as
above), ] Az; = Njzlz;. Subtract: (N, — \j)zlz; = 0, so 27z; = 0 as
X # A /]

2. If Ais real and symmetric, its eigenvalues are real. For Ax = Ax; tak-
ing complex conjugates gives AT = AT as A is real. Transposing, as A is
symmetric, this gives Z7A = A\&'. So ' Az = A\z'z. Also Az = Az, so
7L Ax = \zT2. Subtract: 0 = (A — \)Z7z. But if x has jth element z; + iy;,
Tlr = Zj(sz + y3), positive as x is non-zero. So = A, and A\ is real. //
Note. The same proof shows that if A is anti-symmetric — AT = —A — the
eigenvalues are purely imaginary:.

3. If A is real and orthogonal, its eigenvalues are of unit modulus: || = 1.
Proof. If Az = Az, AT = AT as A is real, so T AT = ZT\. So 7T AT Az =
XAz, which as A is orthogonal is 77z = A\.ZTz. Divide by z7x = Y, 2?7 >
0(asa#0): AA=|N\N>=1.//

4. If C, A are similar (C'= B7'AB), A has eigenvalues A and eigenvectors
x — then C has eigenvalues A and eigenvectors B~z .

Proof. |[A=XI| = 0,s0|C—\I| = |B"*AB-AB'IB| = |B7!||A-\I||B| = 0.
So C has eigenvalues \. C(B™'z) = (B™'AB)(B™'z) = B™'Az = B~ '\z =
A(B7'z), so C has eigenvectors B~ 'z. //

Corollary. Similar matrices have the same determinant and trace.

Proof. These are the product and sum of the eigenvalues. //

5. If A is non-singular, the eigenvalues of A~! are the reciprocals A~ of the
eigenvalues \ of A, and the eigenvectors are the same.

Proof. Az = Ax,s0 x=A"'\x,s0 A lw = "1z, //

6. A is singular iff it has an e-value 0. For, the determinant is the product
of the e-values.

Theorem (Spectral Decomposition, or Jordan Decomposition). A
symmetric matrix A can be decomposed as

A=TAT" =3 Ayl

with A = diag();) the diagonal matrix of eigenvalues A\;, I' = (71,...,7,) an
orthogonal matrix with columns 7; standardised eigenvectors (! 7; = 1).
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We give a more general result (SVD) below. As a corollary, one can show
that for A symmetric, its rank r(A) is the number of non-zero eigenvalues.
Square root of a matrix.

If A is symmetric, with decomposition as above, and we define AY/? :=
diag()\g/z), then putting

A1/2 — FAl/QFT,

AI/ZAI/Q — FAI/QFTFAI/QFT
TAY2AV2TT (A is orthogonal)

= TATT (A = diag(\))
= A

We call A2 the square oot of A. If also A is non-singular (so no eigenvalue
is 0, so each A; !is defined), write

ATV =TATYTT
A similar argument shows that
A—1/2A—1/2 _ A—l

so we call A~Y2 the square root of A~!, and the inverse square root of A.
Positive definite matrices.

If A (n xn) is real and symmetric, A is positive definite (respectively
non-negative definite) if

v Az >0 (respectively > 0) for all non-zero x.

Here 27 Ax = 223:1 T = Y i aux? + i QijTixy is a quadratic form
in the n variables x1,...,x, (one can replace » .. by 23, /).
By the Spectral Decomposition Theorem,

2TAz = 2'TAT Tz =T Ay (y :=T"x)
= Z )\iyz‘Z :

So A is non-negative definite (positive definite) iff Y, \;y? > 0 for all y (> 0
for all non-zero y) iff all A; > 0 (> 0):



Proposition. A real symmetric matrix A is non-negative definite (positive
definite) iff all its eigenvalues are non-negative (positive).

Matrices of the form AT A are common in Statistics (e.g., in Regression).
1. ATA is always non-negative definite, since 7 AT Ax = (Ax)T(Ax) =
yTy=>"9? >0, with y := Az. So all eigenvalues of AT A are non-negative.
2. AT A is positive definite iff all eigenvalues are positive iff AT A is non-
singular, and one can show this happens iff A has full rank.
3. If N(A) is the null space of A (the vector space of all x with Az = 0),
N(A) = N(ATA).
4. ATA, AT and A have the same rank.

2. Singular-values decomposition (SVD).

The following algebraic result is extremely important in Statistics, and
in Numerical Analysis. I used [HJ] 3.0, 3.1, [GvL] 2.5; one reference to a
standard Linear Algebra book is
S. ROMAN, Advanced linear algebra, 3rd ed., Springer, 2008 (or 2nd ed. —
not in 1st ed.).
For a statistical treatment, see e.g. Krzanowski [K] (theory, Section 4.1, ap-
plications, Ch. 4), or
[R] C. R. RAO, Linear statistical inference and its applications, 2nd ed., Wi-
ley, (1973) (1st ed. 1965), 1c(v).
For proof, see there, or SMF 2012 (on course website).

Theorem (Singular-Values Decomposition, SVD). If A (n x p) has
rank r, A can be written
A=ULVT,

where U (n x r) and V (p x r) are column-orthogonal (UTU = VTV = I,)
and L (r x r) is a diagonal matrix with positive elements, and

r
E : T

A= )\ﬂlﬂ)l s
=1

where

(i) the \; are the square roots of the positive eigenvalues of ATA (or AAT) —
the singular values;

(ii) the vectors u;, v; are eigenvectors of AAT and AT A — the left and right
singular vectors.



(For A square and symmetric, this reduces to the Spectral Decomposition).
Eckart-Young Theorem.

The summands u;v] are of rank one (indeed, the general rank-one matrix
is of this form). It was shown by C. H. ECKART (1902-73) and G. YOUNG
in 1936 that, if the singular values are ranked in order of decreasing size,
retaining the first k£ terms in SVD gives the best approximation (in the sense
of a suitable matrix norm — the Frobenius norm) to A by a matrix of rank k.
The statistical importance of this was studied by 1. J. GOOD (1916-2009) in
1969.

Generalised Inverses and SVD.

Recall that the generalised inverse A~ of A satisfies AA~A = A. If A has

SVD A = ULVT, one can check that

A =VLuT

is a generalised inverse of A.
Numerical stability.

Part of the practical importance of SVD lies in the fact that it has good
numerical stability properties. Small perturbations of a matrix cause only
small perturbations of its SVD; thus round-off error etc. has only a limited
effect.

3. Statistical setting.

Usually in Statistics we have univariate data x = (x4, ..., ,), and have to
analyse it. Sometimes, however, each observation contains several different
readings (measurements, for example) on the same ‘individual’, or object.
We then need a two-suffix notation just to describe the data, and so we use
matrices throughout.

Notation. We assume that p variables are measured on each of n objects.
We assemble the np readings into a data matrix

11 ... T1p
X = : : ;

Tn1 -« Tpp

where z;; is the observation on the jth variable measured on the ith reading.



