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IV. REGRESSION

1. Least Squares
The idea of regression is to take some sample of size n from some unknown

population (typically n is large – the larger the better), and seek how best to
represent it in terms of a smaller number of variables, typically involving p
parameters (p to be kept as small as possible, to give a parsimonious repre-
sentation of the data – so p is much smaller than n, p << n). Usually we will
have p explanatory variables, and represent the data as a linear combination
of them (the coefficients being the parameters) plus some random error, as
best we can. To do this, we use the method of least squares, and choose
the coefficients so as to minimise the sum of squares (SS) of the differences
between the observed data points and the linear combination. This gives us
a fitted value; what is left over is called a residual; thus

data = true value + error = fitted value + residual.

If the data forms an n-vector y and the parameters form a p-vector β, the
model equation is

y = Aβ + ϵ,

where A is a known n × p matrix of constants (the design matrix), and ϵ is
an n-vector of errors. In the full-rank case (where A has rank p), it can be
shown ([BF], 3.1) that the least-squares estimates (LSEs) of β are

β̂ = (ATA)−1ATy,

and (Gauss-Markov Theorem) that this gives the minimum-variance unbi-
ased (= ‘best’) linear estimator (or BLUE): in this sense least-squares is best.

Geometrically, the Method of Least Squares projects n-dimensional real-
ity onto the best approximating p-dimensional subspace. Indeed, the key role
is played by the projection matrix P = A(ATA)−1AT (or P = AC−1AT with
C := ATA the information matrix; P is n × n, C is p × p). P is also called
the hat matrix, H, as it projects the data y onto the fitted values ŷ = Aβ̂.

To make good statistical sense of this, we need a statistical model for the
error structure. We will use the multivariate normal distribution (Section 3),
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whose estimation theory follows in Section 4.
The most basic case is p = 2, where one fits a line (two parameters, slope

and intercept) through n data points in the plane. One can show (see e.g.
[BF], 1.2) that the least-squares (best) line is

y = a+ bx, b =
xy − x.y

x2 − x2
= sxy/sxx = rxysy/sx, a = y − bx.

(here sxy is the sample covariance between x and y, sxx = s2x is the sample
variance of x, rxy = sxy/(sxsy) the sample correlation coefficient). This is
the sample regression line. By LLN, its large-sample limit is the (population)
regression line,

y = α+ βx, β = ρσ2/σ1, α = Ey− βEx : y−Ey = (ρσ2/σ1)(x−Ex).

The multivariate normal reduces in this case to the bivariate normal in Sec-
tion 2; we treat this in full because of its fundamental importance and of
how well it illustrates the general case.

Motivating examples:
1. CAPM (I.5). The capital asset pricing model looks at individual risky
assets and compares them with ‘the market’, or some proxy for it such as an
index. One seeks to ‘pick winners’ by maximising ‘beta’, or the slope of the
linear trend of asset price versus market price.
2. Examination scores (BF, 1.4). Here x is the ‘incoming score’ of an entrant
to an elite academic programme, y is the ‘graduating score’; the question is
how well does the institution pick its intake (i.e., how well does x predict y).
3. Galton’s height data (BF, 1.3). Here y = offspring’s height (adult sons,
say), x = average of parents’ heights.
2. The Bivariate Normal Distribution
Recall two of the key ingredients of statistics:
a. The normal distribution, N(µ, σ2):

f(x) =
1

σ
√
2π

exp{−1

2
(x− µ)2/σ2},

which has mean EX = µ and variance varX = σ2.
b. Linear regression by the method of least squares. This is for two-dimensional
(or bivariate) data (X1, Y1), . . . , (Xn, Yn). Two questions arise: (i) Why lin-
ear? (ii) What (if any) is the two-dimensional analogue of the normal law?
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Consider the following bivariate density:

f(x, y) = c exp{−1

2
Q(x, y)},

where c is a constant, Q a positive definite quadratic form in x and y:

c =
1

2πσ1σ2

√
1− ρ2

, Q =
1

1− ρ2

[(x− µ1

σ 1

)2

−2ρ
(x− µ1

σ1

)(y − µ2

σ2

)
+
(y − µ2

σ2

)2]
.

Here σi > 0, µi are real, −1 < ρ < 1. Since f is clearly non-negative, to show
that f is a (probability) density (function) (in two dimensions), it suffices to
show that f integrates to 1:∫ ∞

−∞

∫ ∞

−∞
f(x, y)dxdy = 1, or

∫ ∫
f = 1.

Write

f1(x) :=

∫ ∞

−∞
f(x, y)dy, f2(y) :=

∫ ∞

−∞
f(x, y)dx.

Then to show
∫ ∫

f = 1, we need to show
∫∞
−∞ f1(x)dx = 1 (or

∫∞
−∞ f2(y)dy =

1). Then f1, f2 are densities, in one dimension. If f(x, y) = fX,Y (x, y) is the
joint density of two random variables X, Y , then f1(x) is the density fX(x)
of X, f2(y) the density fY (y) of Y (f1, f2, or fX , fY , are called the marginal
densities of the joint density f , or fX,Y ).

To perform the integrations, we have to complete the square. We have

(1− ρ2)Q ≡
[(y − µ2

σ2

)
− ρ

(x− µ1

σ1

)]2
+ (1− ρ2)

(x− µ1

σ1

)2

(reducing the number of occurrences of y to 1, as we intend to integrate out
y first). Then (taking the terms free of y out through the y-integral)

f1(x) =
exp(−1

2
(x− µ1)

2/σ2
1)

σ1

√
2π

∫ ∞

−∞

1

σ2

√
2π

√
1− ρ2

exp
(−1

2
(y − cx)

2

σ2
2(1− ρ2)

)
dy,

(∗)
where

cx := µ2 + ρ
σ2

σ1

(x− µ1).

The integral is 1 (‘normal density’). So

f1(x) =
exp(−1

2
(x− µ1)

2/σ2
1)

σ1

√
2π

,
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which integrates to 1 (‘normal density’), proving
Fact 1. f(x, y) is a joint density function (two-dimensional), with marginal
density functions f1(x), f2(y) (one-dimensional). So we can write

f(x, y) = fX,Y (x, y), f1(x) = fX(x), f2(y) = fY (y).

Fact 2. X, Y are normal: X is N(µ1, σ
2
1), Y is N(µ2, σ

2
2). For, we showed

f1 = fX to be the N(µ1, σ
2
1) density above, and similarly for Y by symmetry.

Fact 3. EX = µ1, EY = µ2, varX = σ2
1, varY = σ2

2.
This identifies four of the five parameters: two means µi, two variances σ2

i .
Next, recall the definition of conditional probability:

P (A|B) := P (A ∩B)/P (B).

In the discrete case, if X, Y take possible values xi, yj with probabilities
fX(xi), fY (yj), (X,Y ) takes possible values (xi, yj) with probabilities fX,Y (xi, yj):

fX(xi) = P (X = xi) = ΣjP (X = xi, Y = yj) = ΣjfX,Y (xi, yj).

Then the conditional distribution of Y given X = xi is

fY |X(yj|xi) = P (Y = yj & X = xi)/P (X = xi) = fX,Y (xi, yj)/ΣjfX,Y (xi, yj).

In the density case, we have to replace sums by integrals. Thus the con-
ditional density of Y given X = x is

fY |X(y|x) := fX,Y (x, y)/fX(x) = fX,Y (x, y)/

∫ ∞

−∞
fX,Y (x, y)dy.

Fact 4. The conditional distribution of y given X = x is

N(µ2 + ρ
σ2

σ1

(x− µ1), σ2
2(1− ρ2)).

Proof. Go back to completing the square (or, return to (*) with
∫

and dy
deleted):

f(x, y) =
exp(−1

2
(x− µ1)

2/σ2
1)

σ1

√
2π

.
exp(−1

2
(y − cx)

2/(σ2
2(1− ρ2)

σ2

√
2π

√
1− ρ2

.

The first factor is f1(x), by Fact 2. So, fY |X(y|x) = f(x, y)/f1(x) is the
second factor:

fY |X(y|x) =
1

√
2πσ2

√
1− ρ2

exp{−1

2
(y − cx)

2/(σ2
2(1− ρ2))},
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where cx is the linear function of x given below (*). This gives Fact 4, and
Fact 5. The conditional mean E(Y |X = x) is linear in x:

E(Y |X = x) = µ2 + ρ
σ2

σ1

(x− µ1).

Note. This simplifies when X and Y are equally variable, σ1 = σ2:

E(Y |X = x) = µ2 + ρ(x− µ1)

(recall EX = µ1, EY = µ2). Recall that in Galton’s height example, this
says: for every inch of mid-parental height above/below the average, x− µ1,
the parents pass on to their child, on average, ρ inches, and continuing in
this way: on average, after n generations, each inch above/below average
becomes on average ρn inches, and ρn → 0 as n → ∞, giving regression
towards the mean.
(A regression function is a conditional mean – see Section 5.)
Fact 6. The conditional variance of Y given X = x is

var(Y |X = x) = σ2
2(1− ρ2).

Recall (Fact 3) that the variability (= variance) of Y is varY = σ2
2. By Fact

5, the variability remaining in Y when X is given (i.e., not accounted for by
knowledge of X) is σ2

2(1 − ρ2). Subtracting: the variability of Y which is
accounted for by knowledge of X is σ2

2ρ
2. That is: ρ2 is the proportion of the

variability of Y accounted for by knowledge of X. So ρ is a measure of the
strength of association between Y and X.

Recall that the covariance is defined by

cov(X,Y ) := E[(X−EX)(Y−EY )] = E[(X−µ1)(Y−µ2)] = E(XY )−(EX)(EY ),

and the correlation coefficient ρ, or ρ(X,Y ), defined by

ρ = ρ(X,Y ) := cov(X,Y )/(
√
varX

√
varY ) = E[(X − µ1)(Y − µ2)]/σ1σ2

is the usual measure of the strength of association between X and Y (−1 ≤
ρ ≤ 1; ρ = ±1 iff one of X,Y is a function of the other).
Fact 7. The correlation coefficient of X, Y is ρ.
Proof.

ρ(X, Y ) := E
[(X − µ1

σ1

)(Y − µ2

σ2

)]
=

∫ ∫ (x− µ1

σ1

)(y − µ2

σ2

)
f(x, y)dxdy.
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Substitute for f(x, y) = c exp(−1
2
Q), and make the change of variables u :=

(x− µ1)/σ1, v := (y − µ2)/σ2:

ρ(X, Y ) =
1

2π
√
1− ρ2

∫ ∫
uv exp{−1

2
[u2 − 2ρuv + v2]/(1− ρ2)}dudv.

Completing the square, [u2 − 2ρuv + v2] = (v − ρu)2 + (1− ρ2)u2. So

ρ(X, Y ) =
1√
2π

∫
u exp(−1

2
u2)du.

1
√
2π

√
1− ρ2

∫
v exp{−1

2
(v−ρu)2/(1−ρ2)}dv.

Replace v in the inner integral by (v−ρu)+ρu, and calculate the two resulting
integrals separately. The first is zero (‘normal mean’, or symmetry), the
second is ρu (‘normal density’). So

ρ(X, Y ) =
1√
2π

.ρ

∫
u2 exp(−1

2
u2)du = ρ

(‘normal variance’), as required.
This completes the identification of all five parameters in the bivariate

normal distribution: two means µi, two variances σ2
i , one correlation ρ.

Note 1. The above holds for −1 < ρ < 1; always, −1 ≤ ρ ≤ 1. When
ρ = ±1, one of X,Y is a linear function of the other, as with temperature
(Fahrenheit and Centigrade). This is not really two-dimensional: we can
(and should) use only one of X and Y , and reduce to one dimension.
Note 2. The slope of the regression line y = cx is ρσ2/σ1 = (ρσ1σ2)/(σ

2
1),

which can be written as cov(X,Y )/varX = σ12/σ11, or σ12/σ
2
1: the line is

y − EY =
σ12

σ11

(x− EX).

This is the population version (what else?!) of the sample regression line

y − Ȳ =
SXY

SXX

(x− X̄),

from linear regression (Section 1).
The case ρ = ±1 – apparently two-dimensional, but really one-dimensional

– is singular; the case −1 < ρ < 1 - genuinely two-dimensional - is non-
singular, or (III) full rank. We note in passing
Fact 8. The bivariate normal law has elliptical contours. For, the contours
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are Q(x, y) = const, which are ellipses (as Galton found).
Characteristic Function (CF) and Moment Generating Function (MGF).

Recall the CF ϕ(t) := E[eitX ] and MGF M(t) := E[etX ]. For X N(µ, σ2),
MX(t) = exp(µt + 1

2
σ2t2) [SP, Problems 5]. So MX−µ(t) = exp(1

2
σ2t2),

and the CF is ϕX−µ(t) = exp(−1
2
σ2t2). Then (check) µ = EX = M ′

X(0),
varX = E[(X − µ)2] = M ′′

X−µ(0). Similarly in the bivariate case:

ϕX,Y (t1, t2) := E[exp{i(t1X+t2Y )}], MX,Y (t1, t2) := E[exp{i(t1X+t2Y )}].

For the bivariate normal,

ϕ(t1, t2) = E[exp{i(t1X + t2Y )}] =
∫ ∫

exp{i(t1x+ t2y)}f(x, y)dxdy

=

∫
exp{it1x}f1(x)dx

∫
exp{it2y}f(y|x)dy.

The inner integral is the CF of Y |X = x, which is N(cx, σ
2
2, (1 − ρ2)), so is

exp(icxt2 − 1
2
σ2
2(1− ρ2)t22). By Fact 4, cxt2 = [µ2 + ρσ2

σ1
(x− µ1)]t2, so

ϕ(t1, t2) = exp{i(t2µ2−t2
σ2

σ1

µ1−
1

2
σ2
2(1−ρ2)t22)}

∫
exp{i([t1+t2ρ

σ2

σ1

]x)}f1(x)dx.

Since f1(x) is N(µ1, σ
2
1), the inner integral is a normal CF, which is thus

exp{i(µ1[t1+ t2ρ
σ2

σ1
]− 1

2
σ2
1[. . .]

2)}. Combining the two terms and simplifying:
Fact 9. The joint MGF and joint CF of X, Y are

MX,Y (t1, t2) = M(t1, t2) = exp(µ1t1 + µ2t2 +
1

2
[σ2

1t
2
1 + 2ρσ1σ2t1t2 + σ2

2t
2
2]),

ϕX,Y (t1, t2) = ϕ(t1, t2) = exp(iµ1t1 + iµ2t2 −
1

2
[σ2

1t
2
1 + 2ρσ1σ2t1t2 + σ2t

2
2]).

Fact 10. X, Y are independent if and only if ρ = 0.
Proof. For densities: X, Y are independent iff the joint density fX,Y (x, y)
factorises as the product of the marginal densities fX(x).fY (y). For MGFs,
CFs: X, Y are independent iff the joint MFG MX,Y (t1, t2), or CF, factorises
as the product of the marginals. From Fact 9, this occurs iff ρ = 0..
Note. X, Y independent implies X, Y uncorrelated (ρ = 0) in general (when
the correlation exists). The converse if false in general, but true, by Fact 10,
in the bivariate normal case.
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3. The Multivariate Normal Distribution.
With one regressor, we used the bivariate normal distribution as above.

Similarly for two regressors, we use the trivariate normal. With any number
of regressors, as here, we need a general multivariate normal - or ‘multinor-
mal’ - distribution in n dimensions. We must expect that in n dimensions,
to handle a random n-vector X = (X1, · · · , Xn)

T , we will need
(i) a mean vector µ = (µ1, · · · , µn)

T with µi = EXi, µ = EX,
(ii) a covariance matrix Σ = (σij), with σij = cov(Xi, Xj): Σ = covX.

First, note the effect of a linear transformation:

Proposition 1. If Y = AX+b, with Y,b m-vectors, A an m×n
matrix and X an n-vector,
(i) the mean vectors are related by EY = AEX+ b = Aµ+ b,
(ii) the covariance matrices are related by ΣY = AΣAT .

Proof. (i) This is just linearity of E: Yi =
∑

jaijXj + bi, so

EYi =
∑

j
aijEXj + bi =

∑
j
aijµj + bi,

for each i. In vector notation, this is µY = Aµ+ b.
(ii) Yi − EYi =

∑
kaik(Xk − EXk) =

∑
kaik(Xk − µk), so

cov(Yi, Yj) = E[
∑

r
air(Xr−µr)

∑
s
ajs(Xs−µs)] =

∑
rs
airajsE[(Xr−µr)(Xs−µs)]

=
∑

rs
airajsσrs =

∑
rs
AirΣrs(A

T )sj = (AΣAT )ij,

identifying the elements of the matrix product AΣAT . //

Corollary. Covariance matrices Σ are non-negative definite.

Proof. Let a be any n × 1 matrix (row-vector of length n); then Y := aX
is a scalar. So Y = Y T = XaT . Taking a = AT ,b = 0 above, Y has
variance [= 1× 1 covariance matrix] aTΣa. But variances are non-negative.
So aTΣa ≥ 0 for all n-vectors a. This says thatΣ is non-negative definite. //
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