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We turn now to a technical result, which is important in reducing n-
dimensional problems to one-dimensional ones.

Theorem (Cramér-Wold device). The distribution of a random n-vector
X is completely determined by the set of all one-dimensional distributions
of linear combinations tTX =

∑
itiXi, where t ranges over all fixed n-vectors.

Proof. Y := tTX has CF

ϕY (t) := E exp{itY } = E exp{ittTX}.

If we know the distribution of each Y , we know its CF ϕY (t). In particular,
taking t = 1, we knowE exp{itTX}. But this is the CF ofX = (X1, · · · , Xn)

T

evaluated at t = (t1, · · · , tn)T . But this determines the distribution of X. //

Thus by the Cramér-Wold device, to define an n-dimensional distribution
it suffices to define the distributions of all linear combinations.

The Cramér-Wold device suggests a way to define the multivariate normal
distribution. The definition below seems indirect, but it has the advantage
of handling the full-rank and singular cases together (ρ = ±1 as well as
−1 < ρ < 1 for the bivariate case).

Definition. An n-vector X has an n-variate normal distribution iff aTX has
a univariate normal distribution for all constant n-vectors a.

Proposition. (i) Any linear transformation of a multinormal n-vector is
multinormal,
(ii) Any vector of elements from a multinormal n-vector is multinormal. In
particular, the components are univariate normal.

Proof. (i) If Y = AX+c (A an m×n matrix, c an m-vector) is an m-vector,
and b is any m-vector,

bTY = bT (AX+ c) = (bTA)X+ bTc.

If a = ATb (an m-vector), aTX = bTAX is univariate normal as X is multi-
normal. Adding the constant bTc, bTY is univariate normal. This holds for
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all b, so Y is m-variate normal.
(ii) Take a suitable matrix A of 1s and 0s to pick out the required sub-vector.

Theorem 1. If X is n-variate normal with mean µ and covariance matrix
Σ, its CF is

ϕ(t) := E exp{itTX} = exp{itTµ− 1

2
tTΣt}.

Proof. By Proposition 1, Y := tTX has mean tTµ and variance tTΣt.
By definition of multinormality, Y = tTX is univariate normal. So Y is
N(tTµ, tTΣt), so Y has CF

ϕY (t) := E exp{itY } = E exp{ittTX} = exp{ittTµ− 1

2
t2tTΣt}.

Taking t = 1 (as in the proof of the Cramér-Wold device),

E exp{itTX} = exp{itTµ− 1

2
tTΣt}. //

Corollary. The components of X are independent iff Σ is diagonal.

Proof. The components are independent iff the joint CF factors into the prod-
uct of the marginal CFs. This factorization takes place, into Πj exp{iµjtj −
1
2
σjjt

2
j}, in the diagonal case only. //

Recall that a covariance matrix Σ is always
(a) symmetric (σij = σji, as σij = cov(Xi, Xj)),
(b) non-negative definite, written Σ ≥ 0: aTΣa ≥ 0 for all n-vectors a.

Suppose that Σ is, further, positive definite, written Σ > 0:

aTΣa > 0 unless a = 0.

The Multinormal Density.
If X is n-variate normal, N(µ,Σ), its density (in n dimensions) need not

exist (e.g. the singular case ρ = ±1 with n = 2). But if Σ > 0 (so Σ−1

exists), X has a density. The link between the multinormal density below
and the multinormal MGF above is due to the English statistician F. Y.
Edgeworth (1845-1926) in 1893.
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Theorem (Edgeworth). If µ is an n-vector, Σ > 0 a symmetric positive
definite n× n matrix, then
(i)

f(x) :=
1

(2π)
1
2
n|Σ| 12

exp{−1

2
(x− µ)TΣ−1(x− µ)}

is an n-dimensional probability density function (of a random n-vector X,
say),
(ii) X has CF ϕ(t) = exp{itTµ− 1

2
tTΣt},

(iii) X is multinormal N(µ,Σ).

Proof. Write Y := Σ− 1
2X (Σ− 1

2 exists as Σ > 0, by above). Then Y has

covariance matrix Σ− 1
2Σ(Σ− 1

2 )T . Since Σ = ΣT and Σ = Σ
1
2Σ

1
2 , Y has

covariance matrix I (the components Yi of Y are uncorrelated).

Change variables as above, with y = Σ− 1
2x, x = Σ

1
2y. The Jacobian

is (taking A = Σ− 1
2 ) J = ∂x/∂y = det(Σ

1
2 ),= (detΣ)

1
2 by the product

theorem for determinants. Substituting, the integrand is

exp{−1

2
(x−µ)TΣ−1(x−µ)} = exp{−1

2
(Σ

1
2y−Σ

1
2 (Σ− 1

2µ))TΣ−1(Σ
1
2y−Σ

1
2 (Σ− 1

2µ))}.

Writing ν := Σ− 1
2µ, this is

exp{−1

2
(y − ν)TΣ

1
2Σ−1Σ

1
2 (y − ν)} = exp{−1

2
(y − ν)T (y − ν)}.

So by the change-of-density formula, Y has density

g(y) =
1

(2π)
1
2
n|Σ|

1
2

.|Σ|
1
2 . exp{−1

2
(y − ν)T (y − ν)}.

This factorises as

Πn
i=1

1

(2π)
1
2

exp{−1

2
(yi − νi)

2}.

So the components Yi of Y are independent N(νi, 1). So Y is multinormal,
N(ν, I).
(i) Taking A = B = Rn,

∫
Rn f(x)dx =

∫
Rn g(y)dy,= 1 as g is a probability

density, as above. So f is also a probability density (non-negative and inte-
grates to 1).

(ii) X = Σ
1
2Y is a linear transformation of Y, and Y is multivariate normal,
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N(ν, I). So X is multivariate normal.

(iii) EX = Σ
1
2EY = Σ

1
2ν = Σ

1
2 .Σ− 1

2µ = µ, covX = Σ
1
2 covY(Σ

1
2 )T =

Σ
1
2 IΣ

1
2 = Σ. So X is multinormal N(µ,Σ). So its CF is

ϕ(t) = exp{itTµ− 1

2
tTΣt}. //

Note. The inverse Σ−1 of the covariance matrix Σ is called the concentration
matrix, K.

Conditional independence of two components Xi, Xj of a multinormal
vector given the others can be identified by vanishing of the (off-diagonal)
(i, j) entry kij in the concentration matrix K. The proof needs the results
on conditioning and regression in IV.6 D6 below, and the formula for the
inverse of a partitioned matrix; see Problems 6.

Independence of Linear Forms
Given a normally distributed random vector x ∼ N(µ,Σ) and a matrix

A, one may form the linear form Ax. One often encounters several of these
together, and needs their joint distribution – in particular, to know when
these are independent.

Theorem 3. Linear forms Ax and Bx with x ∼ N(µ,Σ) are independent
iff

AΣBT = 0.

In particular, if A, B are symmetric and Σ = σ2I, they are independent iff

AB = 0.

Proof. The joint CF is

ϕ(u,v) := E exp{iuTAx+ ivTBx} = E exp{i(ATu+BTv)Tx}.

This is the CF of x at argument t = ATu+BTv, so

ϕ(u,v) = exp{i(uTA+ vTB)µ− 1

2
(ATu+BTv)TΣ(ATu+BTv)}

= exp{i(uTA+vTB)µ−1

2
[uTAΣATu+uTAΣBTv+vTBΣATu+vTBΣBTv]}.
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This factorises into a product of a function of u and a function of v iff the
two cross-terms in u and v vanish, that is, iff AΣBT = 0 and BΣAT = 0; by
symmetry of Σ, the two are equivalent.

4. Quadratic forms in normal variates
We give a brief treatment of this important material; for full detail see

e.g. [BF], 3.4 – 3.6. Recall (IV.3, D5)
(i) with x ∼ N(µ,Σ), linear forms Ax, BX are independent iff AΣBT = 0;
(ii) for a projection, P 2 = P (P is idempotent); for a symmetric projection,
P TP = P .
We restrict attention, for simplicity, to µ = 0, Σ = σ2I, x ∼ N(0, σ2I).

It turns out that the distribution theory relevant to regression depends on
quadratic forms in normal variates, xTAx for a normally distributed random
vector x, and that we can confine attention to projection matrices. For P a
symmetric projection,

xTPx = xTP TPx = (Px)T (Px),

which reduces from quadratic forms to linear forms – which are much eas-
ier! So: if xP1x, xP2x are quadratic forms in normal vectors x, with P1, P2

projections, xTP1x and xTP2x are independent iff

P1P2 = 0 :

P1, P2 are orthogonal projections. Recall that projections P1, P2 are orthog-
onal if their ranges are orthogonal subspaces, i.e.

(P1x).(P2x) = 0 ∀ x : xTP T
1 P2x = 0 ∀x; P T

1 P2 = 0 ∀x; P1P2 = 0

for Pi symmetric. Note that for P a projection, I−P is a projection orthog-
onal to it:

(I−P )2 = I−2P+P 2 = 1−2P+P = I−P ; P (I−P ) = P−P 2 = P−P = 0.

If λ is an eigenvalue of A, λ2 is an eigenvalue of A2 (check). So if a pro-
jection P has eigenvalue λ, λ2 = λ: λ = 0 or 1. Also, the trace is the sum of
the eigenvalues; for a projection, this is the number of non-zero eigenvalues;
this is the rank. So:
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For a projection, the eigenvalues are 0 or 1, and the trace is the rank.

By Spectral Decomposition (III.1 D4), a symmetric projection matrix P can
be diagonalised by an orthogonal transformation O to a diagonal matrix D:

OTPO = D, P = ODOT ;

as above, the diagonal entries dii are 0 or 1, and we may re-order so that the
1s come first. So with y := OTx,

xTPx = xTODOTx = yTDy = y21 + . . .+ y2r .

Normality is preserved under orthogonal transformations (check!), so also
y ∼ N(0, σ2I). So y21+. . .+y2r is σ

2 times the sum of r independent squares of
standard normal variates, and this sum is χ2(r) (by definition of chi-square):

xTPx ∼ σ2χ2(r).

If P has rank r, I − P has rank n − r (where n is the sample size – the
dimension of the vector space we are working in):

xT (I − P )x ∼ σ2χ2(n− r),

and the two quadratic forms are independent.
It turns out that all this can be generalised, to the sum of several pro-

jections, not just two. This result – the key to all the distribution theory in
Regression – is Cochran’s theorem (William G. COCHRAN (1909-1980) in
1934); [BF] Th. 3.27):

Theorem (Cochran’s Theorem). If

I = P1 + . . .+ Pk

with each Pi a symmetric projection with rank ni, then
(i) the ranks sum: n = n1 + . . .+ nk;
(ii) each quadratic form Qi := xTPix ∼ σ2χ2(ni);
(iii) Q1, . . . , Qk are mutually independent;
(iv) P1, . . . , Pk are mutually orthogonal: PiPj = 0 for i ̸= j.

The quadratic forms that we encounter in Statistics are called sums of squares
(SS) – for regression (SSR), for error (SSE), for the hypothesis (SSH), etc.
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Recall the definition of the Fisher F -distribution with degrees of freedom
(df) m and n (note the order): F (m,n) is the distribution of the ratio

F :=
U/m

V/n
,

where U , V are independent chi-square random variables with df m, n (see
e.g. [BF] 2.3 for the explicit formula for the density, but we shall not need
this).

Recall also (or, if you have not met these, take a look at a textbook):
(i) Analysis of variance (ANOVA) (see e.g. [BF] Ch. 2). Here one tests for
differences between the means of different (normal) populations by analysing
variances. Specifically, one looks at within-groups variability and between-
groups variability, and rejects the null hypothesis of no difference between
the group means if the second is too big compared to the first. As above,
one forms the relevant F -statistic, and rejects if F is too big. Here one has
qualitative factors (which group?).
(ii) Analysis of Covariance (ANCOVA) (see e.g. [BF] Ch. 5. Similarly for
ANCOVA, where one has both qualitative factors (as with ANOVA) and
quantitative ones (covariates), as with Regression.
(iii) Tests of linear hypotheses in Regression (see e.g. [BF] Ch. 6). Here we
reject if SSH is too big compared to SSE.

5. Estimation theory for the multivariate normal.
Given a sample x1, . . . , xn from the multivariate normal Np(µ,Σ), form

the sample mean (vector) and the sample covariance matrix as in the one-
dimensional case:

x̄ :=
1

n

n∑
i=1

xi, S :=
1

n

n∑
i=1

(xi − x̄)T (xi − x̄).

The likelihood for a sample of size 1 is

L(x|µ,Σ) = (2π)−p/2|Σ|−1/2 exp{−1

2
(x− µ)TΣ−1(x− µ)},

so the likelihood for a sample of size n is

L = (2π)−np/2|Σ|−n/2 exp{−1

2

n∑
1

(xi − µ)TΣ−1(xi − µ)}.
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Writing
xi − µ = (xi − x̄)− (µ− x̄),

n∑
1

(xi − µ)TΣ−1(xi − µ) =
n∑
1

(xi − x̄)TΣ−1(xi − x̄) + n(x̄− µ)TΣ−1(x̄− µ)

(the cross-terms cancel as
∑n

1 (xi − x̄) = 0). The summand in the first term
on the right is a scalar, so is its own trace. Since trace(AB) = trace(BA)
and trace(A+B) = trace(B + A),

trace(
n∑
1

(xi − x̄)TΣ−1(xi − x̄)) = trace(Σ−1

n∑
1

(xi − x̄)T (xi − x̄))

= trace(Σ−1.nS) = n trace(Σ−1S).

Combining,

L = (2π)−np/2|Σ|−n/2 exp{−1

2
n trace(Σ−1S)− 1

2
n(x̄− µ)TΣ−1(x̄− µ)}.

Write
V := Σ−1

(‘V for variance’); then

ℓ = const− 1

2
n trace(V S)− (x̄− µ)TV (x̄− µ).

So by the Fisher-Neyman Theorem, (x̄, S) is sufficient for (µ,Σ). It is in fact
minimal sufficient (Problems 2 Q2).

These natural estimators are in fact the MLEs:

Theorem. For the multivariate normal Np(µ,Σ), x̄ and S are the maximum
likelihood estimators for µ, Σ.

Proof. Write V = (vij) := Σ−1. By above, the likelihood is

L = const.|V |n/2 exp{−1

2
n trace(V S)− 1

2
n(x̄− µ)TV (x̄− µ)},

so the log-likelihood is

ℓ = c+
1

2
n log |V | − 1

2
n trace(V S)− 1

2
n(x̄− µ)TV (x̄− µ).
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