smfmockexam.tex

SMF MOCK EXAMINATION. 18.2.2011

Q1. (i) State without proof the spectral decomposition for a real symmetric matrix A. [4]

(ii) Show how to define the square root and inverse square root of A. [2, 2] (iii) If x has independent $N(0, \sigma^2)$ components and y := Ox with O an orthogonal matrix, show that y has the same distribution as x. [5] (iv) If A is real and symmetric, and $Q := x^T A x$ is the quadratic form in x as in (iii), express Q as a quadratic form in independent normal variables with diagonal matrix. [4]

(v) For A real symmetric, show that A is idempotent iff all its eigenvalues are 0 or 1. [4]

(vi) For P a symmetric projection, show that the rank and trace of P coincide. [4]

Q2. (i) Give the definition of the multivariate normal distribution $N(\mu, \Sigma)$.

(ii) Show that if $x \sim N(\mu, \Sigma)$ and y := Ax + b, then y is multivariate normal, and find its mean vector and covariance matrix. [2, 2, 4] (iii) Show that any subvector of a multivariate normal vector is multivariate normal. [2]

(iv) If $x \sim N(\mu, \Sigma)$ is partitioned as

$$x = \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right),$$

state without proof the conditional distribution of x_1 given x_2 . [3] (v) If

$$\Sigma = \begin{pmatrix} 1 & \rho & \rho^2 \\ \rho & 1 & 0 \\ \rho^2 & 0 & 1 \end{pmatrix}$$

and $x \sim N(\mu, \Sigma)$, find the conditional distribution of

$$\left(\begin{array}{c} x_1\\ x_2 \end{array}\right)|x_3.$$
 [10]

[2]

Q3. (i) If $X = (X_t)$ is L_1 -bounded, i.e. $||X||_1 := \sup_t E[|X_t|] < \infty$, and $\psi = (\psi_j) \in \ell_1$ (i.e. $||\psi||_1 = \sum_j |\psi_j| < \infty$), show that $\sum_j \psi_j X_{t-j}$ converges a.s. and in ℓ_1 . [5, 5] (ii) Show that $\ell_1 \subset \ell_2$. [5] (iii) If also X is L_2 -bounded, i.e. $||X||_2 := \sup_t E[|X_t|^2] < \infty$, show that

(iii) If also X is L_2 -bounded, i.e. $||X||_2 := \sup_t E[|X_t|^2] < \infty$, show that $\sum_j \psi_j X_{t-j}$ also converges in ℓ_2 , to the same sum. [10]

Q4. Describe briefly, without proofs, the method of principal components analysis. [6]

Discuss the advantages and disadvantages of working with covariances and with correlations. [6]

Give examples, in the financial area, where each might be appropriate. [13]

Q5. (i) Show that

$$\Sigma = \begin{pmatrix} 1 & \rho & \rho \\ \rho & 1 & \rho \\ \rho & \rho & 1 \end{pmatrix},$$

where the parameter ρ is a correlation, has eigenvalues $1 + 2\rho$ (simple) and $(1 - 2\rho)$ (double), with eigenvectors

$$\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\0 \end{pmatrix}.$$
[4]

(ii) Deduce that this matrix can only be a correlation matrix under a restriction on ρ . Find this restriction, and the further restriction that Σ be non-singular. [4, 4]

(iii) If $x_i \sim N(\mu, \Sigma)$ and the vector y has coordinates $y_1 := x_1 + x_2, y_2 := x_2 + x_3$, find the mean vector and covariance matrix of y. [4, 9]

N. H. Bingham