smfprob1(13a)

SMF PROBLEMS 1. 18.10.2013

Q1. In a normal model $N(\mu, \sigma^2)$, show that \bar{X} is efficient for μ .

Q2. In $N(\mu, \sigma^2)$ with μ known, show that $\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$ is efficient for $v := \sigma^2$.

Q3. In $N(\mu, \sigma^2)$ with σ the parameter of interest but μ unknown (so a nuisance parameter), show that the unbiased sample variance

$$S_u^2 := \frac{1}{n-1} \sum_{1}^{n} (X_i - \bar{X})^2$$

is asymptotically efficient for $v := \sigma^2$, with efficiency $1 - 1/n \to 1$.

Q4 (Minimal sufficiency for the multivariate normal). The multivariate normal distribution (in d dimensions) $N(\mu, \Sigma)$ (μ a d-vector, Σ an $d \times d$ symmetric positive definite matrix) has density (Edgeworth's Theorem: IV.3, D5)

$$f(\mathbf{x}) := \frac{1}{(2\pi)^{\frac{1}{2}d} |\mathbf{\Sigma}|^{\frac{1}{2}}} \exp\{-\frac{1}{2} (\mathbf{x} - \mu)^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu)\}.$$

With $V := \Sigma^{-1}$, we shall show (IV.4, D6) that the likelihood

$$L = (2\pi)^{-nd/2} |\Sigma|^{-n/2} \exp\{-\frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu)\}$$

$$= (2\pi)^{-nd/2} |V|^{n/2} \exp\{-\frac{1}{2}n \ trace(VS) - (\bar{x} - \mu)^T V(\bar{x} - \mu)\}.$$

where the *trace* of a square matrix is the sum of its diagonal elements, and \bar{x} , S are the sample mean and sample covariance matrix,

$$\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad S = S_x := \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^T (x_i - \bar{x}).$$

Show that (\bar{x}, S) is minimal sufficient for (μ, Σ) .

NHB