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SMF SOLUTIONS 9. 13.12.2013

Q1. The relevant densities are

f(y|u) = const. exp{−1

2
(y−Xβ−Zu)TR−1(y−Xβ−Zu)}, f(u) = const. exp{−1

2
uTD−1u}.

By Bayes’ Theorem, f(u|y) = f(y|u)f(u)/f(y) = f(u, y)/f(y).
But the denominator f(y) is just an ‘integration constant’, so

f(u|y) ∝ exp{−1

2
[(y −Xβ − Zu)TR−1(y −Xβ − Zu) + uTD−1u]}.

This has the functional form of a multivariate normal (in u). So it is a
multivariate normal, and we can find which one by picking out the matrix Σ
in the uTΣ−1u term, and then the vector µ in the uTΣ−1µ term. So

Σ−1 = ZTR−1Z +D−1 : Σ = (ZTR−1Z +D−1)−1;

ZTR−1(y−Xβ) = Σ−1µ : µ = ΣZTR−1(y−Xβ) = (ZTR−1Z+D−1)−1ZTR−1(y−Xβ).

Random effects in regression. In this model,

y|u ∼ N(Xβ + Zu,R), u ∼ N(0, D),

the Xβ term is as usual in regression, and covers what are now called the
fixed effects. The Zu term is new, and covers the random effects (we can see
that u is random as we are given its distribution).

Such situations are common. As mentioned in the Problems, this arose in
studies of breeding and yields for dairy cattle. There, the response variable
is milk yield. The fixed effects might involve diet, grazing etc. The random
effects are the individual animals.

In finance, the response variables might be output, profit or return, mar-
ket share etc. The fixed effects might be macroeconomic variables: interest
rates, trade figures, employment figures etc. The random effects might be
the individual firms.

Other situations (see e.g. [BF], S9.1:
Educational studies. Response variables: exam performance; fixed effects:
teaching methods, syllabus etc.; random effects: the individual pupils.
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Athletics times. Response variables: race times; fixed effects: age, gender,
club status (and, though more difficult to measure, training methods, vol-
ume, intensity etc.); random effects: the individual athletes.

Q2. (
A B
C D

)
=

(
M −MBD−1

−D−1CM D−1 +D−1CMBD−1

)

=

(
AM −BD−1CM −AMBD−1 +BD−1 +BD−1CMBD−1

CM − CM −CMBD−1 + I + CMBD−1

)
.

The (1, 1) element is I, from the definition of M . For the (1, 2) entry, the
first and third terms combine to give −BD−1, again by definition of M , so
the (1, 2) element is 0. The (2, 1) element is clearly 0. In the (2, 2) element,
the first and third terms cancel, so the (2, 2) element is I. //

Q3.
K11 = M := Σ11 − Σ12Σ22Σ21,

K12 = −MΣ12Σ22, so K−1
11 K12 = −Σ12Σ

−1
22 .

By the last theorem of IV.6 D9, the covariance matrix of x1|x2 is the
partial covariance matrix Σ11 − Σ12Σ

−1
22 Σ21. With Σ the partitioned matrix

in Q3, this is M−1, in the notation of Q3. By Edgeworth’s theorem, this
identifies the concentration matrix K11 of x1|x2 as K11 = M :

K11 = M ; M := (Σ11 − Σ12Σ
−1
22 Σ21)

−1.

If x1 is a 2-vector, Σ11, K11 are 2× 2 matrices. Now (III.1)(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
:

a non-singular 2×2 matrix A is diagonal iff its inverse A−1 is diagonal. For a
Gaussian vector, two components are independent iff they are uncorrelated,
i.e. iff their (2× 2) covariance matrix is diagonal. So: for a 2-vector x1, with
xT = (xT

1 , x
T
2 ): the components of x1 are conditionally independent given x2

(i.e., given all the other components of x) iff K11 is diagonal, i.e. iff k12 = 0
in an obvious notation. Similarly for kij for any i ̸= j. So: components xi,
xj of a random vector x ∼ N(µ,Σ) are conditionally independent given the
other components iff kij = 0.
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