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4. General autoregressive processes, AR(p).
Again working with the zero-mean case for simplicity, the extension of

the above to p parameters is the model

Xt = ϕ1Xt−1 + ϕ2Xt−2 + · · ·+ ϕpXt−p + ϵt, (∗)

with (ϵt) WN as before. Since Xt−i = BiXt, we may re-write this as

Xt − ϕ1BXt − · · · − ϕpB
pXt = ϵt.

Write
ϕ(λ) := 1− ϕ1λ− · · · − ϕpλ

p

for the pth order polynomial here. Then formally,

ϕ(B)Xt = ϵt : Xt = ϕ(B)−1ϵt,

so if we expand 1/ϕ(λ) in a power series as

1/ϕ(λ) ≡ 1 + β1λ+ · · ·+ βnλ
n + · · · ,

Xt =
∑∞

i=0
βiB

iϵt =
∑∞

0
βiϵt−i.

This is the analogue of Xt =
∑∞

0 ϕ
iϵt−i for AR(1), and shows that Xt can

again be represented as an infinite moving-average process – or linear process
(Xt is an (infinite) linear combination of the ϵt−i).

Multiply (∗) through byXt−k and take expectations. SinceE[Xt−kXt−i] =
ρ(|k − i|) = ρ(k − i), this gives

ρ(k) = ϕ1ρ(k − 1) + · · ·+ ϕpρ(k − p) (k > 0). (YW )

These are the Yule-Walker equations, due to G. Udny YULE (1871-1951) in
1926 and Sir Gilbert WALKER (1868-1958) in 1931.

The Yule-Walker equations (YW) have the form of a difference equation
of order p. The characteristic polynomial of this difference equation is

λp − ϕ1λ
p−1 − · · · − ϕp = 0,
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which by above is
ϕ(1/λ) = 0.

If the roots are λ1, · · · , λp, the trial solution ρ(k) = λk is a solution iff λ is
one of the roots λi. Since the equation is linear,

ρ(k) = c1λ
k
1 + · · ·+ cpλ

k
p

(for k ≥ 0, and use ρ(−k) = ρ(k) for k < 0) is a solution for all choices of
constants c1, · · · , cp. This is the general solution of (YW) if all the roots λi
are distinct, with appropriate modifications for repeated roots (if λ1 = λ2,
use c1λ

k
1 + c2kλ

k
1, etc.).

Now |ρ(k)| ≤ 1 for all k (as ρ(.) is a correlation coefficient), and this is
only possible if

|λi| ≤ 1 (i = 1, · · · , p)
– that is, all the roots lie inside (or on) the unit circle. This happens (as our
polynomial is ϕ(1/λ)) if and only if all the roots of the polynomial ϕ(λ) lie
outside (or on) the unit circle. Then |ρ(k)| ≤ 1 for all k, and when there are
no roots of unit modulus, also ρ(k) → 0 as k → ∞ – that is, the influence of
the remote past tends to zero, as it should. We shall see below that this is
also the condition for the AR(p) process above to be stationary.
Example of an AR(2) process.

Xt =
1

3
Xt−1 +

2

9
Xt−2 + ϵt, (ϵt) WN. (1)

Moving-average representation. Let the MA representation of (Xt) be

Xt =
∑∞

i=0
ψiϵt−i. (2)

Substitute (2) into (1):∑∞

0
ψiϵt−i =

1

3

∑∞

0
ψiϵt−i−1 +

2

9

∑∞

0
ψiϵt−2−i + ϵt

=
1

3

∑∞

1
ψi−1ϵt−i +

2

9

∑∞

2
ψi−2ϵt−i + ϵt.

Equate coefficients of ϵt−i:
i = 0 gives ψ0 = 1; i = 1 gives ψ1 =

1
3
ψ0 = 1/3; i ≥ 2 gives

ψi =
1

3
ψi−1 +

2

9
ψi−2.
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Proceed as above. The characteristic polynomial is

λ2 − 1

3
λ− 2

9
= 0, or (λ− 2

3
)(λ+

1

3
) = 0,

with roots λ1 = 2/3 and λ2 = −1/3. The general solution of the difference
equation is thus ψi = c1λ

i
1 + c2λ

i
2 = c1(2/3)

i + c2(−1/3)i. We can find c1, c2
from the values of ψ0, ψ1, found above:
i = 0 gives c1 + c2 = 0, or c2 = 1− c1.
i = 1 gives c1.(2/3)+(1−c1)(−1/3) = ψ1 = 1/3: 2c1−(1−c1) = 1: c1 = 2/3,
c2 = 1/3. So

ψi =
2

3
(
2

3
)i +

1

3
(
−1

3
)i = (

2

3
)i+1 − (

−1

3
)i+1,

and

Xt =
∑∞

0
[(
2

3
)i+1 − (

−1

3
)i+1]ϵt−i,

giving the moving-average representation, as required.
Autocovariance. Recall the Yule-Walker equations

ρ(k) = ϕ1ρ(k − 1) + ϕ2ρ(k − 2)

for AR(2). As before,
ρ(k) = aλk1 + bλk2

for some constants a, b. Taking k = 0 and using ρ(0) = 1 gives a + b = 1:
b = 1− a. So here,

ρ(k) = a(2/3)k + (1− a)(−1/3)k.

Taking k = 1 in the Yule-Walker equations gives

ρ(1) = ϕ1ρ(0) + ϕ2ρ(−1),

which as ρ(0) = 1 and ρ(−1) = ρ(1) gives

ρ(1) = ϕ1/(1− ϕ2).

As here ϕ1 = 1/3 and ϕ2 = 2/9, this gives ρ(1) = 3/7. We can now use this
and the above expression for ρ(k) to find a: taking k = 1 and equating,

ρ(1) = 3/7 = a.(2/3) + (1− a).(−1/3).
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That is,

(
3

7
+

1

3
) = a.(

2

3
+

1

3
) = a :

a = (9 + 7)/21 = 16/21. Thus

ρ(k) =
16

21
(
2

3
)k +

5

21
(
−1

3
)k.

Note. For large k, the first term dominates, and

ρk ∼ 16

21
.(
2

3
)k (k → ∞).

AR(p) processes (continued). We return to the general case. Just as in the
AR(2) example above, if the AR(p) process has a moving-average represen-
tation

Xt =
∑∞

i=0
ψiϵt−i,

then if σ2 = varϵt,

varXt = σ2.
∑∞

i=0
ψ2
i .

The condition ∑∞

i=0
ψ2
i <∞

(in words: (ψi) is square-summable, or is in ℓ2) is necessary and sufficient for
(i) varXt <∞;
(ii) the series

∑
ψiϵt−i in the moving-average representation to be convergent

in mean square – or, in ℓ2.
So for convergence in ℓ2,

∑
ψ2
i <∞ is the necessary and sufficient condition

(NASC) for the moving-average representation of Xt to exist. Since
∑
ψiϵt−i

is (when convergent) stationary (because (ϵt) is stationary: if
∑
ψ2
i < ∞,

then Xt is stationary. The converse is also true; see Section 5 below.

5. Condition for stationarity
We return to the general case. Just as in the AR(2) example above, if

the AR(p) process has a moving-average representation

Xt =
∑∞

i=0
ϕiϵt−i,

then if σ2 = varϵt,

varXt = σ2
∑∞

i=0
ϕ2
i .
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The condition ∑∞

i=0
ϕ2
i <∞

((ϕi) is square-summable, or is in ℓ2) is necessary and sufficient for
(i) varXt <∞;
(ii) the series

∑
ϕiϵt−i in the moving-average representation to be convergent

in mean square – or, in ℓ2.
So if we interpret convergence in the mean-square sense,

∑
ϕ2
i < ∞ is

the necessary and sufficient condition (NASC) for the moving-average rep-
resentation of Xt to exist. Since

∑
ϕiϵt−i is (when convergent) stationary

(because (ϵt) is stationary):
if
∑
ϕ2
i <∞, then (Xt) is stationary. The converse is also true, giving:

Theorem (Condition for Stationarity). The following are equivalent:
(i) The parameters ϕ1, · · · , ϕp in the AR(p) model

Xt = ϕ1Xt−1 + · · ·+ ϕpXt−p + ϵt, (ϵt) WN(σ2) (∗)

define a stationary process (Xt);
(ii) The roots of the polynomial

ϕ(λ) := ϕpλ
p + · · ·+ ϕ1λ− 1 = 0

lie outside the unit disc in the complex λ-plane;
(iii) Xt has the moving-average representation

Xt =
∑∞

i=0
ϕiϵt−i

with ∑∞

i=0
ϕ2
i <∞.

Proof. Substituting the moving-average representation into (∗),∑∞

i=0
ϕiϵt−i =

∑p

k=1
ϕk

∑∞

i=0
ψiϵt−k−i + ϵt

=
∑p

k=1
ϕk

∑∞

i=k
ϕi−kϵt−i + ϵt

=
∑∞

i=1
(
∑min(i,p)

k=1
ϕkϕi−k)ϵt−i + ϵt.

Equating coefficients of ϵt−i, we obtain the difference equation

ϕi =
∑p

k=1
ϕkϕi−k (i ≥ p)
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(with similar equations for i = 0, 1, · · · , p − 1, which provide starting-values
for the difference equation above). The difference equation, of order p, has
general solution

ϕi =
∑p

k=1
ckλ

i
k,

where λ1, · · · , λp are the roots of the characteristic polynomial

λp − ϕ1λ
p−1 − · · · − ϕp−1λ− ϕp = 0

(with appropriate modifications in the case of repeated roots, as before).
[Check: if ϕi = λi is a trial solution of the difference equation, λi =

∑p
1ϕkλ

i−k.
Multiply through by λp−i: λp =

∑p
1ϕkλ

p−k.] Now as ϕi =
∑p

1ckλ
i
k and

|λik| → ∞, = 1 or → 0 as i → ∞ according as |λk| > 1, = 1 or < 1,∑
ϕ2
i < ∞ iff each |λk| < 1, i.e. each root of λp − ϕ1λ

p−1 − · · · − ϕp = 0 is
inside the unit disk, i.e. each root of

ϕ(λ) = ϕpλ
p + ϕp−1λ

p−1 + · · ·+ ϕ1λ− 1 = 0

is outside the unit disk. This is all that remained to be proved. //

In the stationary case, we thus have

γt = cov(Xt, Xt+τ ) = σ2
∑∞

i=0
ϕiϕi+τ ,

with
∑
ϕ2
i < ∞ and ϕi =

∑p
k=1ckλ

i
k, |λi| < 1. If λ1 (say) is the root of

largest modulus, ϕi ∼ c1λ
i
1 for large i, and ϕiϕi+τ ∼ c21λ

τ+2i
1 . So for large τ ,

we can expect

γτ ∼ σ2
∑

c21λ
τ+2i
1 ∼ const.λτ1, ρτ ∼ γτ/γ0 ∼ λτ1.

Thus for a stationary AR(p) model, we expect that the autocorrelation de-
creases geometrically to zero for large lag τ (the decay rate being the char-
acteristic root of largest modulus).
Note. For AR(1), the autocorrelation is geometrically decreasing: ρτ = ρτ –
exactly, even for small τ . Since the sample autocorrelation (correlogram) rτ
approximates the population autocorrelation ρτ = ρτ : for AR(1),

rτ ∼ ρτ :

the sample ACF is approximately geometrically decreasing (i.e., geometrically
decreasing plus sampling error), even for small lags τ . We can look for this
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pattern at the beginning of a plot of the ACF, and this is the signature of an
AR(1) process. But for AR(p), p > 1, the approximation above only holds
for large τ , by which time rτ will be small (it approximates ρτ , which tends
to zero as τ increases), and the pattern of geometric decrease will tend to
be swamped by sampling error. Consequently, it is much harder to interpret
the correlogram of an AR(p) for p > 1 than for an AR(1).

By contrast, the moving average – MA(q) – models considered below
have autocorrelations that cut off - they are zero beyond lag q, apart from
sampling error. This is the signature of the ACF of an MA(q), and is easy
to interpret; an AR(1) signature is easy to interpret; that of an AR(p) for
p > 1 is (usually) not.

6. Moving average processes, MA(q).
Suppose we have a system in which new information arrives at regular

intervals, and new information affects the system’s response for a limited pe-
riod. The new information might be economic, financial etc., and the system
might involve the price of some commodity, for example.

The simplest possible model for the new information process, or inno-
vation process, is white noise, WN(σ2), so we assume this. The simplest
possible model for a response with such a limited time-influence is

Xt = ϵt +
∑q

j=1
θjϵt−j, (ϵt) WN(σ2).

This is called a moving-average process or order q, MA(q).
In terms of the lag operator B, ϵt−j = Bjϵt, so if

θ(B) := 1 +
∑q

j=1
θjB

j,

Xt = θ(B)ϵt.

Autocovariance. Since Eϵt = 0, EXt = 0 also. So writing θ0 = 1,

γk = cov(Xt, Xt+k) = E[XtXt+k] = E[
∑q

i=0
θiϵt−i

∑q

j=0
θjϵt−k−j]

=

q∑
i,j=0

θiθjE[ϵt−iϵt−k−j].

Now E[.] = 0 unless i = j + k, when it is σ2. It suffices to take k ≥ 0 (as
γ(−k) = γ(k)). If also k ≤ q, we can take j = i− k, and then the limits on
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j are 0 ≤ j ≤ q − k, as 0 ≤ i ≤ q. If however k > q, there are no non-zero
terms as there are no i = k + j with 0 ≤ i, j ≤ q. So

γ0 = σ2
∑q

j=0
θ2j , γk =

{
σ2
∑q−k

j=0θjθj+k, if k = 0, 1, · · · , q,
0 if k > q,

so the autocorrelation is

ρk =

{∑q−k
i=0 θiθi+k/

∑q
i=0θ

2
i if k = 0, 1, · · · , q,

0 if k > q.

This sudden cut-off of the autocorrelation after lag k = q is the signature of
an MA(q) process.
First-order case: MA(1).

The model equation is

Xt = ϵt + θϵt−1.

By above,

ρ0 = 1, ρ1 = θ/(1 + θ2), ρk = 0 (k ≥ 2).

In terms of the lag (backward shift) operator B:

Xt = (1 + θB)ϵt,

ϵt = (1 + θB)−1Xt =
∑∞

0
(−θ)kBkXt = Xt +

∑∞

1
(−θ)kXt−k :

Xt = ϵt −
∑∞

1
(−θ)kXt−k.

This is an infinite-order autoregressive representation of (Xt). For (mean-
square) convergence on RHS, as in the AR theory above, we need |θ| < 1.
The MA(1) model is then said to be invertible: the passage from MA(1)
using (1 + θB) to AR(∞) using (1 + θB)−1 is called inversion.
Note. If we replace θ by 1/θ, ρ1 goes from θ/(1 + θ2) to (1/θ)/[1 + (1/θ)2] =
θ/(1+ θ2) – the same as before. So for θ ̸= 1, two different MA(1) processes
have the same ACF: we cannot hope to identify the process from the ACF,
or its sample version, the correlogram. But for |θ| ̸= 1, exactly one of these
processes is invertible. So if we restrict attention to invertible MA processes,
identifiability is restored in general (|θ| ̸= 1), but not when |θ| = 1, θ ̸= 1.
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