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8. Hilbert-space methods.
The prediction above is done in the least-squares sense – to minimise the

expected squared errors. This has a nice geometrical interpretation in terms
of projections (see e.g. [BF], Ch. 4). In our finite-dimensional setting, this
just involves Euclidean geometry, but the method works just as well in in-
finitely many dimensions – Hilbert space (‘Euclidean space of infinitely many
dimensions’ – see V.9).
9. Nonlinear systems.

The Kalman filter is linear, and (as linearity and Gaussianity are so
closely linked) works very well in the Gaussian case. However, in practice
one encounters non-linear systems (and non-Gaussian errors). The extended
Kalman filter reduces to the linear case by linearisation. This works well in
some applications (such as GPS – geographic positioning systems). But it
does not always give good results – for example, it may not be numerically
stable. Also, to implement it one needs computer-intensive methods such as
MCMC (Markov chain Monte Carlo), particle filters etc.1

10. Financial applications.
The Kalman filter has been extensively applied in finance (e.g., for cali-

bration of interest-rate models). For background, see e.g.
C. WELLS, The Kalman filter in finance, Springer, 1996;
11. State-space models for time series.

The Kalman filter, and state-space models generally, have also been ex-
tensively used in Time Series; see e.g.
J. DURBIN & S. KOOPMAN, Time series analysis by state-space methods,
OUP, 2001;
A. C. HARVEY, Forecasting, structural time series models and the Kalman
filter, CUP, 1991;
12. Change-point detection.

One important application is in automatic control of industrial produc-
tion. If a machine in use begins to deteriorate, or deviate from its required
performance level (for lack of maintenance, etc.), it is important to be able
to detect this as quickly as possible. Such quick-detection problems are an

1MCMC and particle filters are specialities of the Imperial College Mathematics De-
partment.

1



important area of application of the Kalman filter and its relatives.

12. Complements.
1. Akaike Information Criterion (AIC).

In choosing a model, we are torn between two conflicting objectives. One
is goodness of fit, and here we can achieve a better fit by using a more
complex model, with more parameters. The other is simplicity – according
to the Principle of Parsimony, one should use the simplest model that will
do the job. In order to achieve a sensible balance between these two, we
use a penalised likelihood method – likelihood, penalised by the number of
parameters. The simplest and commonest is the Akaike information criterion
(AIC),: if there are p parameters in the model,

AIC := −2log-likelihood + 2(p+ 1)

(p + 1 parameters, counting the variance σ2, usually unknown) (H. Akaike
(1927-) in 1974). For computer implementation, see e.g.
[VR] W. N. VENABLES & B. D. RIPLEY, Modern applied statistics with
S, 4th ed., Springer, 2002, p. 174.

There is a variant on AIC, the Bayesian information criterion (BIC)
(Gideon E. Schwarz, 1978); see e.g. [BD], p.291, and Ch. VII below.
Over-interpretation/over-fitting.

It is important to note that, in general terms, one should resist the temp-
tation to achieve a better fit with a more complex model. Our data is to be
modelled; given a model, what we see is data = model prediction + noise.
The first term is the signal, or trend; the second term is the error. Our task
is to try to iron out the noise or error so as to reveal the signal or trend
more clearly. Going for a better fit treats the error with ”too much respect”:
the errors we actually observed (accidental, and of no interest in themselves)
are left in our model too much. This gives a better fit to the data already
observed, but a misleadingly complicated model which will give a worse fit
to future data. The phenomenon is called over-interpretation, or over-fitting.
It is quite general, and not specific to the present context of Time Series. For
further discussion, see a Statistics textbook, e.g. [BF].

2. Unit roots and the (augmented) Dickey-Fuller test.
For simplicity, recall [V.3, Day 10] the AR(1) model:

Xt = ϕXt−1 + ϵt; (∗)
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E[Xt|Ft−1] = ϕXt−1.

In probability language, this says that X is a martingale for ϕ = 1, a submg
for ϕ > 1 and a supermg for ϕ < 1. In econometric language, the impact of
Xt will die out with time if ϕ < 1, but not if ϕ = 1. Thus the influence of
the current state dies away with time for ϕ < 1 (which we need to have a
stationary model), but not for ϕ = 1. The distinction is vital for economet-
rics (compare the discussion in V.10, Day 13, about the work of Engle and
Granger): if an economy is (say) depressed, policy makers want it to recover,
not get stuck in its current state.

For such reasons, unit roots are dangerous. One needs to avoid them,
and to be able to test for their presence. One way to avoid unit roots is
to difference the data (as many times as necessary; cf. the above discussion
of ARIMA(p, d, q) extensions to ARMA(p, q). Various tests for unit roots
have been developed, most notably the Dickey-Fuller (DF) and augmented
Dickey-Fuller (ADF) tests. The theory would take us too far afield here; for
background and details, we must refer to an econometrics text, e.g.
T. C. MILLS, The econometric modelling of financial time series, 2nd ed.,
CUP, 1999 (1st ed. 1993), §§3.1.2, 3.1.3,
J. Y. CAMPBELL, A. W. LO & A. C. MacKINLAY, The econometrics of
financial markets, Princeton UP, 1997, §2.7.
For computer implementation, see e.g.
R. A. CARMONA, Statistical analysis of financial data in S-Plus, Springer,
2004, §5.4.7.

3. Residuals and the Ljung-Box test.
When fitting a model to data, one has

data = trend [or signal] + error [or noise] = fitted value + residual.

We are using white noise as our error – no structure or pattern.
The first thing to check is whether there is a signal (if not, there is no

point in trying to estimate it!). Exploratory data analysis (EDA) will sug-
gest absence of a signal if the data seems patternless; we then test for this
(below).

If there is a signal, our fitted model should reveal as much as possible
of the signal, leaving (ideally) merely noise – patternless. So a good model
produces patternless residuals. One can (and should!) inspect for this by
EDA. One can also test for it.
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One revealing aspect of pattern here is serial correlation (recall the cor-
relogram r = (rn) of §1). In the Gaussian case (which we can restrict to
here), uncorrelatedness is the same as independence. Recall that the sum of
squares of n iid N(0, σ)s is distributed as σ2χ2(n). From this, Ljung and Box
(1978) developed their test: for white noise (patternless),

Qm := n(n+ 2)
m∑
k=1

r2k/(n− k) ∼ χ2(m) (n large, m << n).

One rejects the null hypothesis (Ch. II!) of no serial correlation if the Qm

statistic is too big. Our current model then fails to fit well enough, and we
must look further for one that does. For details, see e.g.
P. J. DIGGLE, Time series: A biostatistical introduction, OUP, 1990, §2.5.

4. Markov chain Monte Carlo (MCMC); sequential MCMC (particle filters).
We mentioned [V.11, Day 13] the extended Kalman filter, and its appli-

cation to non-linear situations (recall the Kalman filter applies to the LQG
case – linear, quadratic, Gaussian), and that its implementation involves
computer-intensive methods such as MCMC and particle filters.

We discuss MCMC briefly in VI.4 [Day 15] below, and its statistical ap-
plication in VII.6. In brief: to simulate from a distribution we cannot tackle
directly, it may be possible instead to construct a Markov chain whose limit-
ing distribution is the desired distribution. Then if we run the chain for long
enough, its distribution will approximate the desired limit.

Particle filters involve various ideas:
Importance sampling in Simulation. Here, we focus our simulation effort on
the parts of the region which are of most interest to us.
Non-parametrics (Ch. VI below), in particular empiricals. The idea here is
to replace an unknown distribution by a (random) empirical distribution – a
weighted average of points drawn from the unknown distribution.
Each of these random points is regarded as a particle. Particles in regions of
less importance are weeded out, and replaced by copies drawn from regions
of greater importance. The method is powerful; for a full treatment, see e.g.
A. BAIN & D. CRISAN, Fundamentals of stochastic filtering, Springer, 2009,
Ch. 9, 10.
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VI. NON-PARAMETRICS

1. Empiricals; the Glivenko-Cantelli theorem
The first thing to note about Parametric Statistics is that the parametric

model we choose will only ever be approximately right at best. We recall
Box’s Dictum (the English statistician George E. P. BOX (1919 –)): al mod-
els are wrong – some models are useful. For example: much of Statistics uses
a normal model in one form or other. But no real population will ever be
exactly normal. And even if it were, when we sampled from it, we would
destroy normality, e.g. by the need to round data to record it; rounded data
is necessarily rational, but a normal distribution takes irrational values a.s.

So we avoid choosing a parametric model, and ask what can be done with-
out it. We sample from an unknown population distribution F . One impor-
tant tool is the empirical (distribution function) Fn of the sample X1, . . . , Xn.
This is the (random!) probability distribution with mass 1/n at each of the
data points Xi. Writing δc for the Dirac distribution at c – the probability
measure with mass 1 at c, or distribution function of the constant c –

Fn :=
1

n

n∑
1

δXi
.

The next result is sometimes called the Fundamental Theorem of Statistics.
It says that, in the limit, we can recover the population distribution from
the sample: the sample determines the population in the limit. It is due to
V. I. GLIVENKO (1897-1940) and F. P. CANTELLI (1906-1985), both in
1933, and is a uniform version of Kolmogorov’s Strong Law of Large Num-
bers (SLLN, or just LLN), also of 1933.

Theorem (Glivenko-Cantelli Theorem, 1933).

sup
x

|Fn(x)− F (x)| → 0 (n → ∞) a.s.

Proof. Think of obtaining a value ≤ x as Bernoulli trials, with parameter (=
success probability) p := P (X ≤ x) = F (x). So by SLLN, for each fixed x,

Fn(x) → F (x) a.s.,

as Fn(x) is the proportion of successes. Now fix a finite partition −∞ =
x1 < x2 < . . . < xm = +∞. By monotonicity of F and Fn,

sup
x

|Fn(x)− F (x)| ≤ max
k

|Fn(xk)− F (xk)|+max
k

|F (xk+1 − F (xk)|.
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Letting n → ∞ and refining the partition indefinitely, we get

lim supn sup
x

|Fn(x)− F (x)| ≤ sup
x

∆F (x) a.s.,

where ∆F (x) denotes the jump of F (if any – there are at most countably
many jumps!) at x. This proves the result when F is continuous.

In the general case, we use the Probability Integral Transformation (PIT,
IS, I). Let U1, . . . , Un . . . be iid uniforms, Un ∼ U(0, 1). Let Yn := g(Un),
where g(t) := sup{x : F (x) < t}. By PIT, Yn ≤ x iff Un ≤ F (x), so the Yn

are iid with law F , like the Xn, so wlog take Yn = Xn. Writing Gn for the
empiricals of the Un,

Fn = Gn(F ).

Writing A for the range (set of values) of F ,

sup
x

|Fn(x)− F (x)| = sup
t∈A

|Gn(t)− t| ≤ sup
[0,1]

|Gn(t)− t|,→ 0 a.s.,

by the result (proved above) for the continuous case. //

If F is continuous, then the argument above shows that

∆n := sup
x

|Fn(x)− F (x)|

is independent of F , in which case we may take F = U(0, 1), and then

∆n = sup
t∈(0,1)

|Fn(t)− t|.

Here ∆n is theKolmogorov-Smirnov (KS) statistic, which by above is distribution-
free if F is continuous. It turns out that there is a uniform CLT corresponding
to the uniform LLN given by the Glivenko-Cantelli Theorem: ∆n → 0 at rate√
n. The limit distribution is known – the Kolmogorov-Smirnov distribution

1− 2
∞∑
1

(−)k+1e−2k2x2

(x ≥ 0).

It turns out also that, although this result is a limit theorem for random
variables, it follows as a special case of a limit theorem for stochastic pro-
cesses. Writing B for Brownian motion, B0 for the Brownian bridge (B0(t) :=
B(t)− t, t ∈ [0, 1]),

Zn :=
√
n(Gn(t)− t) → B0(t), t ∈ [0, 1]
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(Donsker’s Theorem: Monroe D. DONSKER (1925-1991) in 1951 – origi-
nally, the Erdös-Kac-Donsker Invariance Principle). The relevant mathe-
matics here is weak convergence of probability measures (under an appropriate
topology). Thus, the KS distribution is that of the supremum of Brownian
bridge. For background, see e.g. Kallenberg Ch. 14.
Higher dimensions.

In one dimension, the half-lines (−∞, x] form the obvious class of sets to
use – e.g., by differencing they give us the half-open intervals (a, b], and we
know from Measure Theory that these suffice. In higher dimensions, obvi-
ous analogues are the half-spaces, orthants (sets of the form

∏n
k=1(−∞, xk]),

etc. – the geometry of Euclidean space is much richer in higher dimensions.
We call a class of sets a Glivenko-Cantelli class if a uniform LLN holds for
it, a Donsder class if a uniform CLT holds for it. For background, see e.g.
[vdVW]. This book also contains a good treatment of the delta method in
this context – the von Mises calculus (Richard von MISES (1883-1953), or
infinite-dimensional delta method.

Variants on the problem above include:
1. The two-sample Kolmogorov-Smirnov test.

Given two populations, with unknown distributions F , G, we wish to test
whether they are the same, on the basis of empiricals Fn, Gm.
2. Kolmogorov-Smirnov tests with parameters estimated from the data.

A common case here is testing for normality. In one dimension, our hy-
pothesis of interest is whether or not F ∈ {N(µ, σ2) : µ ∈ R, σ > 0}. Here
(µ, σ) are nuisance parameters: they occur in the formulation of the problem,
but not in the hypothesis of interest.

Although the Glivenko-Cantelli Theorem is useful, it does not tell us,
say, whether the law F is absolutely continuous, discrete etc. For, there are
discrete G arbitrarily close to an abs. cts F (discretise), and abs. cts F
arbitrarily close to a discrete F (by smooth approximation to F at its jump
points). So sampling alone cannot tell us what type of law F is. So we have
to choose what kind of population distribution to assume. Often this will
have a density f ; we have to assume how smooth to take f . This leads on to
density estimation, below.

2. Curve and surface fitting.
We begin with some background. Suppose we have n points (xi, yi), with

the xi distinct, and we wish to interpolate them – find a function f with
f(xi) = yi, i = 1, . . . , n. One can of course do this by linear interpolation
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between each adjacent pair of points, obtaining a continuous piecewise-linear
function – but this is not smooth enough for many purposes. One might
guess that as a polynomial of degree n− 1 contains n degrees of freedom (its
n coefficients), it might be possible to interpolate by such a polynomial, and
this is indeed so (Lagrangian interpolation, or Newtonian divided-difference
interpolation). There is a whole subject here – the Calculus of Finite Differ-
ences (the discrete analogue of the ordinary (‘infinitesimal’) calculus).

The degree n may be large (should be large – the more data, the better).
But, polynomials of large degree are very oscillatory and numerically unsta-
ble. We should and do avoid them. One way to do this is to use splines.
These are continuous functions, which are polynomials of some chosen low
degree (cubic splines are the usual choice in Statistics) between certain spe-
cial points, called knots (or nodes), across which the function and as many
derivatives as possible are continuous. So a cubic spline is piecewise cubic;
it and its first two derivatives continuous are across the knots.

Another relevant piece of background is the histogram, familiar from el-
ementary Statistics courses. One represents discrete data diagrammatically,
with vertical bars showing how many data points fall in each subinterval.

Computer implementation is necessary to use methods of this kind in
practice. For a general account using the computer language S (from which
R, and the proprietary package S-Plus, are derived), see e.g. [VR], 5.6.
Roughness penalty.

Using polynomials of high degree, we can fit the data exactly. But we
don’t, because the resulting function would be too rough (‘too wiggly’). It
is better to fit the data approximately rather than exactly, but obtain a
nice smooth function at the end. One way to formalise this (due to I. J.
GOOD (1916-2009) and his pupil R. A. Gaskins in 1971) is to use a rough-
ness penalty – to measure the roughness of the function by some integrated
measure –

∫
(f ′′)2 is the usual one for use with cubic splines – and minimise

a combination of this and the relevant sum of squares (see IV, [BF] 9.2):

min
n∑
1

(yi − f(xi))
2 + λ2

∫
(f ′′)2.

Here λ2 is the smoothing parameter. It is under the control of the statistician,
who can choose how much weight to give to goodness of fit (the first term)
and how much to smoothness/roughness (the second term).
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