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In hypothesis testing, such prior knowledge by the experimenter (scien-
tific, manufacturing etc.) is tacitly assumed, because we need it to be able to
formulate H0 and H1 sensibly. But we may not be willing to enter the ‘accept
or reject’ framework of hypothesis testing [which some statisticians believe is
inappropriate and damaging]: how then can we use prior knowledge? In the
estimation framework also, we may know a lot about θ before sampling [as
in the rope example above]: indeed, if we do not have some prior knowledge
of the situation to be studied, we would in practice not have enough prior
interest in it to be willing to invest the time, trouble and money to study it
statistically.

Bayesian statistics addresses this by giving a framework where
1. The statistician knows something before sampling: he has some prior
knowledge.
2. He then draws a sample, and analyses the data to extract some relevant
information.
3. He then updates his prior information with his data (or sample) informa-
tion, to obtain posterior information

(prior: before (sampling); posterior: after (sampling)).
This verbal description of the Bayesian approach is attractive, because

it resembles how we learn. Life involves (indeed, largely consists of) a con-
stant, ongoing process of acquiring new information and using it to update
our previous (‘prior’) information/beliefs/attitudes/policies.

To implement the Bayesian approach, we need some mathematics. The
formulae below derive from the work of the English clergyman
Thomas BAYES (1702-1761): An essay towards solving a problem in the
doctrine of chances (1763, posth.).
Recall that if A,B are events of positive probability,

P (A) > 0, P (B) > 0,

the conditional probability of A given (or knowing) B is

P (A|B) := P (A ∩B)/P (B).

Symmetrically,

P (B|A) := P (B ∩ A)/P (A) = P (A ∩B)/P (A).
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Combining,
P (A ∩B) = P (A|B)P (B) = P (B|A)P (A) :

P (B|A) = P (A|B)P (B)/P (A) (Bayes’ formula, or Bayes’ theorem).

Interpretation.
1. Think of A as a ‘cause’, B as an ‘effect’. We naturally first think
of P (effect B|cause A). We can use Bayes’ formula to get from this to
P (cause A|effect B) (think of B as an effect we can see, A as an effect we
can’t see).
2. Suppose we are interested in event B. We begin with an initial, prior
probability P (B) for its occurrence. This represents how probable we ini-
tially consider B to be [this depends on us: we will have to estimate P (B)!].
Suppose we then observe that event A occurs. This gives us new information,
which affects how probable we should now consider B to be, after observing
A [or, to use the technical term, a posteriori]. Bayes’ theorem tells us how
to do this updating: we multiply by the ratio P (A|B)/P (A):

P (B|A) = P (B).P (A|B)/P (A) :

posterior probability of B = prior probability of B × updating ratio.
We first observe some extreme cases.

Independence. If A, B are independent, P (A ∩B) = P (A).P (B), so

P (B|A) = P (A ∩B)/P (A) = P (A).P (B)/P (A) = P (B),

and similarly P (A|B) = P (A): updating ratio = 1, posterior probability =
prior probability – conditioning on something independent has no effect.
Inclusion.
1. A ⊂ B: here, P (A ∩ B) = P (A), P (A|B) = P (A ∩ B)/P (B) =
P (A)/P (B);

updating ratio P (A|B)/P (A) = 1/P (B), posterior probability = 1.
2. B ⊂ A: P (A∩B) = P (B), P (A|B) = P (A∩B)/P (B) = P (B)/P (B) = 1;
updating ratio P (A|B)/P (A) = 1/P (A), posterior probability = P (B)/P (A).
Partitions. B partitions Ω into two disjoint events B; A is the disjoint union
of A ∩B and A ∩Bc, so

P (A) = P (A ∩B) + P (A ∩Bc) = P (A|B)P (B) + P (A|Bc)P (Bc).

Similarly, if Ω = ∪n
1Bi with Bi disjoint, A = ∪n

1 (A ∩ Bi), disjoint. So by
finite additivity,

P (A) = Σn
r=1P (A∩Br) = Σn

r=1P (A|Br)P (Br) (Formula of total probability),
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using the definition of conditional probability again.
Such expressions are often used for the denominator in Bayes’ formula:

P (Br|A) = P (Br)P (A|Br)/P (A) = P (Br)P (A|Br)/ΣkP (Bk)P (A|Bk).

3. Prior and posterior densities.
Suppose now we are studying a parameter θ. Suppose we have data x

[x may be a single number, i.e. a scalar, or a vector x = (x1, · · · , xn) of
numbers; we shall simply write x in both cases]. Recall that x is an observed
value of a random variable, X say. In the density case, this random variable
has a (probability) density (function), f(x) say, a non-negative function that
integrates to 1:

f(x) ≥ 0,

∫
f(x)dx = 1

(here and below, integrals with limits unspecified are over everything).
Interpretation. P (X ∈ A) =

∫
A
f(x)dx for measurable sets A ⊂ R. For

instance, if A = (−∞, x],

F (x) := P (X ∈ (−∞, x]) = P (X ≤ x) =

∫ x

−∞
f(y)dy ∀x ∈ R;

as x varies, F (x) gives the (probability) distribution (function) of X.]
In brief: the density f(x) describes the uncertainty in the data x.

The distinctive feature of Bayesian statistics is that it treats parameters
θ in the same way as data x. Our initial (prior) uncertainty about θ should
also be described by a density f(θ):

f(θ) ≥ 0,

∫ ∞

−∞
f(θ)dθ = 1, P (θ ∈ A) =

∫
A

f(θ)dθ ∀A ⊂ R,

where the probability on the left is a prior probability. The analogue for
densities of Bayes’ formula P (B|A) = P (B)P (A|B)/P (A) now becomes

f(θ|x) = f(θ)f(x|θ)/f(x). (∗)

The density on the left is the posterior density of θ given the data x; it de-
scribes our uncertainty about θ knowing x. Now densities integrate to 1:∫
f(θ|x)dθ = 1, so

∫
[f(θ)f(x|θ)/f(x)]dθ = 1:∫

f(θ)f(x|θ)dθ = f(x).
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Combining,

f(θ|x) = f(θ)f(x|θ)/
∫

f(θ)f(x|θ)dθ.

In the discrete case, θ and/or xmay take discrete values θ1, θ2, · · ·, x1, x2, · · ·
only, with probabilities f(θ1), f(θ2), · · ·, f(x1), f(x2), · · ·. The above formulae
still apply, but with integrals replaced by sums:

P (X ∈ A) = Σx∈Af(x), P (θ ∈ B) = Σθ∈Bf(θ),

f(x) = Σθf(θf(x|θ), f(θ|x) = f(θ)f(x|θ)/Σθf(θ)f(x|θ).

In the formula f(θ|x) = f(θ)f(x|θ)/f(x), it is θ, the parameter under
study, which is the main focus of interest. Consequently, the denominator
f(x) – whose role is simply to ensure that the posterior density f(θ|x) inte-
grates to 1 (i.e., really is a density) – can be omitted (or understood from
context). This replaces the equation above by a proportionality statement:

f(θ|x) ∝ f(θ)f(x|θ)

(here ∝, read as ‘is proportional to’, relates to the variability in θ, which is
where the action is). Now f(x|θ) can be viewed in two ways:
(i) for fixed θ as a function of x. It is then the density of x when θ is the
true parameter value,
(ii) for fixed/known/given data values x as a function of θ. It is then called
the likelihood of θ (Fisher), familiar from IS, Ch. I, Ch. II, etc.

The formula above now reads, in words:

posterior ∝ prior × likelihood.

This is the essence of Bayesian statistics. It shows how Bayes’ theorem may
be used to update the prior information on θ before sampling by using the
information in the data x – which is contained in the likelihood factor f(x|θ)
by which one multiplies – to give the posterior information on θ after sam-
pling. Thus posterior information combines two sources: prior information
and data/sample/likelihood information.
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4. Examples.
Example 1. Bernoulli trials with Beta prior ([O’H], Ex. 1.4, p.5).

Here θ represents the probability of a head on tossing a biased coin. On
the basis of prior information, θ is assumed to have a prior density propor-
tional to θp−1(1− θ)q−1 (0 ≤ θ ≤ 1) for p, q > 0:

f(θ) ∝ θp−1(1− θ)q−1 (0 ≤ θ ≤ 1).

Writing

B(p, q) :=

∫ 1

0

θp−1(1− θ)q−1dθ

(the Beta function),

f(θ) = θp−1(1− θ)q−1/B(p, q).

[We quote the Eulerian integral for the Beta function: for

Γ(p) :=

∫ ∞

0

e−xxp−1dx (p > 0), B(p, q) = Γ(p)Γ(q)/Γ(p+q) (p, q > 0).]

Note that, as p, q vary, the shape of f(θ) varies – e.g, the graph is u-shaped
if 0 < p, q < 1, n-shaped if p, q > 1. Here p, q are called hyperparameters -
they are parameters describing the parameter θ.

Suppose now we toss the biased coin n times (independently), observing
x heads. Then x is our data. It has a discrete distribution, the binomial
B(n, θ), described by

f(x|θ) =
(
n

x

)
θx(1− θ)n−x (x = 0, 1, · · · , n).

We apply Bayes’ theorem to update our prior information on θ – our prior
values of p, q – by our data x. Now

f(x) =

∫
f(θ)f(x|θ)dθ =

∫
θp−1(1− θ)q−1

B(p, q)
.

(
n

x

)
θx(1− θ)n−xdθ

=

(
n

x

)
.

1

B(p, q)
.

∫ 1

0

θp+x−1(1− θ)q+n−x−1dθ =

(
n

x

)
.
B(p+ x, q + n− x)

B(p, q)
.

So Bayes’ theorem gives

f(θ|x) = f(θ)f(x|θ)/f(x) =
(
n

x

)
.

1

B(p, q)
.θp+x−1(1−θ)q+n−x−1/

(
n

x

)
.
B(p+ x, q + n− x)

B(p, q)
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or

f(θ|x) = θp+x−1(1− θ)q+n−x−1

B(p+ x, q + n− x)
.

The posterior density of θ is thus another Beta density, B(p+ x, q + n− x).
Summarising:
• prior B(p, q) is updated by data x heads in n tosses to posterior
B(p+ x, q + n− x).
Graphs. To graph the three functions of θ – prior, likelihood and posterior –
first find their maxima.
Likelihood: f(x|θ) has a maximum where log f(x|θ) has a maximum, i.e.
where
x log θ + (n− x) log(1− θ) has a maximum, i.e. where

x

θ
− n− x

1− θ
= 0 : x− xθ = nθ − xθ : θ = x/n.

Prior: similarly, f(θ) has a maximum where log f(θ) does, i.e. where

p− 1

θ
− q − 1

1− θ
= 0 : p− pθ − 1 + θ = qθ − θ : θ = (p− 1)/(p+ q − 2).

Example 2. Normal family with normal prior ([O’H], Ex. 1.5 p.7). Suppose
x is the sample mean of a sample of n independent readings from a normal
distribution N(θ, σ2), with σ known and θ the parameter of interest. So x is
N(θ, σ2/n):

f(x|θ) = 1√
2π.σ/

√
n
exp{−1

2
(x− θ)2/

σ2

n
}.

Suppose that on the basis of past experience [prior knowledge] the prior
distribution of θ is taken to be N(µ, τ 2):

f(θ) =
1√
2πτ

exp{−1

2
(θ − µ)2/τ 2}.

Now f(x) =
∫
f(θ)f(x|θ)dθ:

f(θ)f(x|θ) = 1

2π.τσ/
√
n
. exp{−1

2

[(θ − µ)2

τ 2
+

(x− θ)2

σ2/n

]
}.

The RHS has the functional form of a bivariate normal distribution (IV.2 D7,
[BF] 1.5). So to evaluate the θ-integration, we need to complete the square
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(cf. solving quadratic equations!). First,

(x− θ)2 = [(x− µ)− (θ − µ)]2 = (x− µ)2 − 2(x− µ)(θ − µ) + (θ − µ)2.

We write for convenience

c :=
1

τ 2
+

1

σ2/n
.

Then

f(θ)f(x|θ) = const. exp{−1

2

[
c(θ − µ)2 − 2

σ2/n
(θ − µ)(x− µ) + function of x

]
}

= const. exp{−1

2
c
[
(θ − µ)2 − 2(θ − µ)(x− µ)

cσ2/n
+ function of x

]
}

= const. exp{−1

2
c
(
θ − µ− x− µ

cσ2/n

)2

+ function of x}.

Then from (*), to get the posterior density f(θ|x) we have to take the
product f(θ)f(x|θ) above, and divide by f(x) – a function of x only (θ has
been integrated out to get it). So: the posterior density f(θ|x) is itself of
the form above, as a function of θ (with a different constant and a different
function of x – but these do not matter, as our interest is in θ).

We can now recognise the posterior f(θ|x) – it is normal. We can read
off:
(i) its mean, µ+ (x− µ)/(cσ2/n),
(ii) its variance, 1/c. Thus the posterior precision is c. But from the definition
of c, this is the sum of 1/τ 2, the prior precision, and 1/(σ2/n), the data
precision. By (i), the mean is

µ[1− data precision

posterior precision
] + x.[

data precision

posterior precision
],

or

µ[
prior precision

posterior precision
] + x.[

data precision

posterior precision
].

This is a weighted average of the prior mean µ and the data value x (the
sample mean of the n readings), weighted according to their precisions. So:
(a) the form, mean and variance (or precision) of the posterior density are
intuitive, statistically meaningful and easy to interpret,
(b) the conclusions above show clearly how the Bayesian procedure synthe-
sises prior and data information to give a compromise,
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(c) the family of normal distributions is closed in the above example: a nor-
mal prior and normal data give a normal posterior. This is an example of
conjugate priors, to which we return later.
Note. The example above on the normal distribution makes another impor-
tant point: often θ will be a vector parameter, θ = (θ1, · · · , θp) – as with, e.g.,
the normal distribution N(µ, σ2). For simplicity, the variance σ2 in the above
was taken known. But in general, we will not know σ2. Instead, we should
include it in the Bayesian analysis, representing our uncertainty about it in
the prior density. We then arrive at a posterior density f(θ|x) for the vector
parameter θ = (θ1, · · · , θp). If our interest is in, say, θ1, we want the poste-
rior density of θ1, f(θ1|x). We get this just as in classical statistics we get
a marginal density out of a joint density – by integrating out the unwanted
variables.

In the normal example above, Ex. 2, we could impose a prior density on
σ without assuming it known. This can be done ([O’H], Ex. 1.6 p.8, Lee [L],
§2.12), but there is no obvious natural choice, so we shall not do so here.

Example 3. The Dirichlet distribution ([O’H], Ex. 1.7 p.10, §10.2-6). Con-
sider the density in θ = (θ1, · · · , θk) on the region

θ1, · · · , θk ≥ 0, θ1 + · · ·+ θk = 1

(a simplex in k dimensions), with density

f(θ) ∝ Πk
i=1θi

ai−1

for constants ai. We quote that the constant of proportionality is

Γ(a1 + · · ·+ ak)/Γ(a1) · · ·Γ(ak),

by Dirichlet’s integral, an extension of the Eulerian integral for the gamma
function (see [O’H] 10.4, or, say, 12.5 of
WHITTAKER, E. T. &WATSON, G. N.: Modern analysis, 4th ed., 1927/1963,
CUP).
Thus the Dirichlet density D(a1, · · · , ak) with parameters θ1, · · · , θk is

f(θ) :=
Γ(a1 + · · ·+ ak)

Γ(a1) · · ·Γ(ak)
.θ1

a1−1 · · · θkak−1.
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