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Postscript: Amenability.

When discussing prior ignorance (2 above), we noted that there is no uni-
form distribution on the line R (w.r.t. Lebesgue measure); similarly for the
integers Z (w.r.t. counting measure). Both are locally compact, non-compact
topological groups; such groups have a Haar measure — a measure invariant
under the group action (addition here). Haar measure is only finite when
the group is compact; it can then be normalised to be a probability measure,
and so serve as a uniform distribution. But both R and Z are o-compact (a
countable union of compact sets, [-n,n] or N,, = {—n,—n+1,...,n—1,n}),
each of which does have a uniform distribution, and one may use this as a
proxy for the non-existent uniform distribution on the group by approxima-
tion. What this actually shows is that R and Z are amenable — possess an
invariant mean (which serves, in some sense, as a substitute for a uniform
distribution). The standard work on amenability is
Alan L. T. PATERSON, Amenability, AMS, 2000.

We refer there for more, including an extensive bibliography and applications
to Bayesian Statistics.

6. Hierarchical models; Markov Chain Monte Carlo (MCMC).

In the Bayesian paradigm, everything is random, including the parame-
ters; also, the parameters are drawn from a prior, and we may have difficulty
in choosing the prior. Such difficulties may be lessened if we draw the param-
eters of the prior from some ‘prior prior’, which will itself have parameters,
called hyperparameters. Such a model is called a hierarchical model. Our
main sources here are Robert [R] Ch. 8,9, Gelman et al. [GCSR] Ch. 5, 11.

Definition. A hierarchical Bayes model is a Bayesian model (f(x|6),m(0))
in which the prior 7(#) is decomposed into conditional distributions

71(9\91), 7T2(91’92), s aWn(Qn—lwn)
and a marginal 7,1(6,|60,) such that

(6) :/--~/7T1(9|91)7T2(91|92)7Tn(9n—1|9n)7rn+1(9n)d91---d9n+1- (H)
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The parameters 6; are called hyperparameters of level i.

A hierarchical Bayes model is itself a Bayesian model, but the decomposi-
tion (H) is often useful — e.g., in MCMC (below), and in revealing structural
information.

One rarely needs to go beyond n = 2, and we shall not do so. So we shall
always have

6‘91 N7Tl(6|61>, 91 N7TQ(61>. (H)

Here the distribution of 6 is a mizture of the 01, with mizing distribution .

Example: Random effects in the linear model.

We may have a mized model, with some fized effects, as in IV, and some
random effects. The classical instance of this is Henderson’s work on the
breeding of dairy cows (1950). The fixed effects are the objects of study —
typically, diet, of interest for its effect on milk yield. The random effects are
the animals — animals differ, just as people do. It is conventional to write
the model equation here as

y=Xp+ Zu+e,

where
W= (X,2)

is the n x (p + q) design matrix, X (n x p) and Z (n x q) are the design
submatrices for the fixed and random effects. We take the random effects
uw and the error € uncorrelated (independent when both are Gaussian, as we
may as well assume here). The best linear unbiased estimator (BLUE) of
IV.1 is conventionally called a best linear unbiased predictor (BLUP) here.
These are the solutions of Henderson’s mized model equations (MMEs). Two
different forms of the BLUP are given in [BF] 9.1. The use of Bayes’ theorem
is mentioned there. This is a hierarchical model with

ylo ~ N(0,%), 0|8 ~ N(Xj,%2).

Here the mean 6 of y is decomposed into the fixed effects X 8 and the random
effects Zn, where n ~ N (0, X5).
Education.

Mixed models are widely used in educational studies (and more widely



in Social Statistics). Here the fixed effects are the ones being studied — con-
cerning, e.g., influence on performance of changes in syllabus, examination
mode etc. The random effects are the pupils.

Finance.

Here the fixed effects are state of the economy, industrial sector etc. The
random effects are the specific characteristics of the individual firms involved
in the study.

Bayesian v. classical.

Strictly speaking, whether this procedure is classical or Bayesian depends
on what our inference is about. The procedure is classical if the inference
is about the fixed effects (), but Bayesian if it is about the overall effects ().

Normal mean-variance miztures (NMVM); normal variance miztures (NVM).
The Bessel function of the third kind, K, () real) is defined (for our pur-
poses) by the integral representation

K)\(x):%/Ooou’\exp{—%(u+1/u)}du/u (x >0).
Then for ¥, x > 0,
A
o) = el el sy} (@ >0

is a probability density, the generalised inverse Gaussian (GIG).

The distribution of x ~ N(u + B0?,0?), where o2 is sampled randomly
from GIG, forms a normal mean-variance mizture (NMVM), with mizing
distribution GIG. 1t is called the generalised hyperbolic distribution, GH.
The case = 0 is simpler; we then get a normal variance mizture (NVM).

The GH distributions have been much used in mathematical finance,
specially for return distributions with intermediate return interval — say,
daily returns (Bingham & Kiesel 2001; Barndorff-Nielsen 1970s-90s; Eberlein
1990s). The log-density is a (branch of a) hyperbola (hence the name). As a
hyperbola has linear asymptotes, the log-density decays linearly at +o00. By
contrast, the Gaussian log-density (monthly returns) decays quadratically,
while the Student t log-density (tick data) decays logarithmically.

The GH distributions can be defined in any number of dimensions. They
have two important general properties:

1. They are elliptical. They are an important parametric special case within
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this semi-parametric setting; see 1.6.2 D2, V.6 D6, VI.3 D10.
2. They are self-decomposable: they belong to the class SD of distributions
of stationary AR(1) time-series models,

Xy = pXi1 + €.

Bayesian sampling; HM.
We return to (H), in the form

7(0)z) = /7r1(9|x, M) (A|x)dA. (H)

If we can sample efficiently from 7; and 75, we can use MCMC (in the form of
a Bayesian sampling technique, data augmentation (Tanner & Wong, 1987))
to sample from 7, by the following iterative algorithm.

Initialisation: Start with an arbitrary value A.

[teration: For ¢ =1,...,k, generate

a. 01 ~ 7T1(0|.I‘, )\i—l);

b. A; ~ m(A|x, ;).

The generation of 6; only depends on 6;_1, not on previous values, so (6;)
has the Markov property. Under suitable regularity conditions, this Markov
chain will be ergodic, with limiting distribution 7; furthermore, the approach
to stationarity will often be geometrically fast.

The Hastings-Metropolis algorithm HM in this setting runs as follows.
To sample from a distribution 7 known up to a normalising factor, and given
a transition kernel ¢(6]6"), HM proceeds as follows.

(i) Start with 6, arbitrary.
(ii) Update from 6,, to 6,,.1 by:
1. Generate & ~ q(.|0,,);

2. Define ) a(0l6)
o m()q(Om
B <7T<9m)Q(£|6m)) M

3. Take
Omi1 := & with probability p, 6, otherwise.

Again under suitable regularity conditions, the Markov chain (6,,) converges
to the equilibrium distribution 7 as m increases. The convergence is often
geometrically fast, again under suitable conditions.



Graphical models

It is possible to model complex statistical situations, with many variables,
some of which are conditionally independent given others. Such conditional
independence can be conveniently encoded, and represented visually, using
graphs (in the sense of Graph Theory, an important branch of Combinatorial
Theory). We must be brief here; we refer for a monograph treatment to
Steffen L. LAURITZEN, Graphical models, OUP, 1996.

Graphical models originate in three different areas:
(i) Statistical Physics, in the work of Gibbs!. Here the idea is that particles
can only interact with their immediate neighbours.
(ii) Genetics. This, incidentally, is one of the major application areas of
heirarchical models, MCMC etc. (Human Genome Project, etc.).
(iii) Contingency tables. The analysis of complicated multi-dimensional con-
tingency tables, where the data is counts cross-classified by characteristics,
is important in the Social Sciences.

See in particular Lauritzen, Ch. 4 (Contingency tables), Ch. 5 (Mul-
tivariate normal models), 7.3.1 (MCMC); also EM algorithm (two steps —
expectation, maximisation), 7.4.1.

7. Further Bayesian aspects.

1. Posterior means [O’H] 1.25, p.15].
If ¢ is an estimate of 0 given data x, the mean squared error is

E[(t — 0)%|2] = E[t*|a] — 2E[t0]z] + E[62|a] = 2 — 2LE[6]z] + E[6%)x]

(t is a statistic, that is, a function of the data z, so is known when x is known,
and can be taken out of the expectation signs). Add and subtract (E[6|x])*:

E[(t — 0)?|x] = (t — E[f]2])* + var(0|z).

Thus the value of ¢ which minimises the posterior expected squared error is
t = E[f|x], the posterior mean. This now has two roles:

(i) minimising mean square error,

(ii) location summary of the posterior distribution.

1J. W. Gibbs (1839-1903), American; one of the three founding fathers of Statistical
Physics, with James Clerk Maxwell (1831-1879), Scottish, and Ludwig Boltzmann (1844-
1906), German.



2. Repeated use of Bayes’ Theorem [O’H] 3.5, p. 66].

Suppose now our data x is partitioned into (x1, z2), where we observe
first and x5 second. With prior f(6), we have two stages:
Stage 1. Posterior

FOl) = FOf@l0)/ f@),  fla) = / fO) f@ o). (i)

Stage 2. The prior density for stage 2 is the posterior density above after
stage 1. The likelihood is f(x2]0,x1). So the posterior is

[0y, 22) = f(Olz1) f (220, 71)/ f (2] 71), f(xa|z1) = /f(e\xl)f(@\@axl)d@-
(44)
Substitute f(f|xy) from (i) into (ii):
f(e)f(xl‘e)f(x2|97$l)
f@) fzalzy)

Now f(za|z1) := f(x1,22)/f(x1), so the denominator is f(z1,x2). Similarly,
the numerator is

f(evxl) f(@,[Bl,ZL‘Q)
f0) — f(6,21)

fOlzy,2) =

f(&). :f(g’xhl?) :f(e)f($1,$2|9)-

So
fOlzy, 20) = f(0).f(21,22]0)] f (21, 22),

the usual result of Bayes’ Theorem for updating by the whole data x =
(x1,22) in one step. So:

Proposition. If data z = (x, z5) arrives in two stages, two applications of
Bayes’ Theorem, updating by x; first, then by x5 given z, is equivalent to
one application of Bayes’ Theorem updating by x = (z1, x2).

Corollary. If data x = (xy,- - -, x,) arrives successively in n stages, n appli-
cations of Bayes’ Theorem — updating by x; given xy,---,x;—1 (i =1,---,n)

— are equivalent to one application of Bayes’ theorem.

The systematic repeated use of Bayes’ theorem is important in the sub-
jects of Time Series (Ch. V) and Forecasting. In particular, the repeated
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recursive use of Bayes’ theorem occurs in the Kalman filter (V.11), which is
widely used — for instance, in engineering applications [on-line, or real-time,
control of spacecraft, etc.] and in econometric time-series.

3. Sufficiency [O’H] 3.9, 69].

Suppose now that © = (x1,xs), where x; is informative about 6, x5 is
uninformative. This is the idea of sufficiency, already encountered in classical
statistics. We give a Bayesian treatment. To say that x, is uninformative
means that xo cannot affect our views on 6, that is,

(i) f(0|x) = f(O|x1,2z2) does not depend on z, i.e.

f<07x17x2) _ f(97x1> :

f(e’l’l,flh) = f(e‘xl)’ or f(:lj‘l £L’2> B f(xl)

f(]?(’;l:;f;?) N f(fx(z?)’ Le.  f(wo]zy,0) = f(xal21)

(ii) f(z2]z1,0) does not depend on 6.
Either of (i), (ii), which are equivalent, can be used as the definition of suf-
ficiency in a Bayesian treatment. Notice that (i) is essentially a Bayesian
statement: it is meaningless in classical statistics, as there 6 cannot have a
density.

Now recall the classical Fisher-Neyman Factorisation Criterion for suffi-
ciency: the likelihood f(z|f) factorises as
(iii) f(z]0), or f(x1,x2|0), = g(x1,0)h(z1, x2),
for some functions g, h. As before:

Proposition. z; is sufficient for 6 iff the Factorisation Criterion (iii) holds.
Proof. (ii) = (iii):

f(z]0) = f(x1,22|0) = f(21]0)f(22|x1,0) (as in 2 above)
= f(@]0)f(xo|xy)  (by (ii)),

giving (iii).

(iii) = (i): By Bayes’ Theorem in the form ‘posterior proportional to prior
times likelihood’, the factor h(z,x9) in (iii) can be absorbed into the con-
stant of proportionality [which is unimportant: it can be recovered from the
remaining terms, its role being merely to make these integrate to one|. Then
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x9 drops out, so does not appear in the posterior, giving (i). //

Note. This proof is easier than the classical one! To a Bayesian, it is also
more intuitive and revealing.

4. Asymptotic normality [O’H| 3.18, p. 74].

We recall (I.3) that in classical statistics, the maximum-likelihood esti-
mator 6§ of 6 based on n i.i.d. readings x1,- - -, x, is asymptotically normal,
with mean 6 and variance 1/(nl(0)), where I(6) is the Fisher information
per reading:

1(0) = E[(¢'(9))] = —E["(0)], () = log f(x]0)

the log-likelihood (the likelihood itself is usually written L(6) in classical
statistics). This result needs some regularity conditions:

(i) enough smoothness to justify differentiating under the integral sign twice
with respect to 6 (as in the derivation of the above equation for the informa-
tion, and in the proof of the Cramér-Rao inequality),

(ii) that the support of the likelihood (the region where it is positive) should
not depend on 6.

Now the above is a large-sample result, in which the sample size n increases.
So we expect that the data information will swamp the prior information. It
does, and in the Bayesian case: [O'H], 3.18-26.

5. Ezxponential families.
A likelihood f(z]0) belongs to the exponential family if it is of the form

f(]0) = exp{a(f)u(z) + b(0) + k() }

(as usual, we use vector notation: z,6 may be several-dimensional; see be-
low). Exponential families (introduced in 1935-36 by Darmois, Pitman and
Koopman) arise naturally in classical statistics. We quote: if a statistic u(z)
is minimum-variance (‘efficient’) and unbiased for 6, then the likelihood can
be written in the above form (this follows from the conditions for equality
in the Cramér-Rao inequality giving the minimum-variance bound, or ‘in-
formation bound’). By the Fisher-Neyman Factorisation Criterion, u(z) is
sufficient for 6. So efficiency implies sufficiency and membership of an expo-
nential famaly.



