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Exponential families (continued).
Now efficiency is not a Bayesian concept (it looks at the distribution of

the statistic, so at values we could have seen but didn’t, not just at the like-
lihood), nor is unbiasedness (for the same reason). However, sufficiency is
important in Bayesian statistics also (above), as are exponential families.

First, we generalise the exponential family approach to cover several pa-
rameters and several sufficient statistics: call f(x|θ) a member of the k-
parameter exponential family if

f(x|θ) = exp{Σk
1Aj(θ)Bj(x) + C(x) +D(θ)}.

Then by the Fisher-Neyman Factorisation Criterion, B1(x), · · · , Bk(x) are
sufficient statistics for the k parameters A1(θ), · · · , Ak(θ). Suppose the prior
is of the form

f(θ) = f(θ; a1, · · · , ak, d) = exp{Σk
1ajAj(θ) + dD(θ) + c(a1, · · · , ak, d)}.

Then the posterior f(θ|x) ∝ f(θ)f(x|θ), i.e. to

exp{Σk
1Aj(θ)(aj +Bj(x)) + (d+ 1)D(θ)},

i.e. to
f(θ; a1 +B1(x), · · · , ak +Bk(x); d+ 1).

This is a (k+1)-dimensional exponential family. Its importance is that if
the prior belongs to this family, so too does the posterior: the family is closed
under sampling. This property is of crucial importance, partly because it is
so mathematically convenient, partly because it shows up the structure of
the problem. For instance, we shall return below to two of the examples we
met in VII.2, where the relationship between prior and likelihood can now
be seen in this light to be natural. The prior above is called the natural
conjugate family to the exponential family above.

Example 1. Bernoulli distribution. For x = 0, 1,

f(x|θ) = θx(1− θ)1−x =
( θ

1− θ

)x

(1− θ) = exp{x log
( θ

1− θ

)
+ log(1− θ)} :
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here k = 1, A1(θ) = log
(

θ
1−θ

)
, B1(x) = x,C(x) = 0, D(θ) = log(1− θ).

The natural conjugate family is

f(θ; a1, d) = exp{a1A1(θ) + dD(θ) + c(a1, d)}

= exp{a1 log
( θ

1− θ

)
+ d log(1− θ) + c(a1, d)}

= θa1(1− θ)d−a1 exp{c(a1, d)},

which is Beta B(a1, d− a1) as in VII.2.

2. Normal distribution, N(µ, σ2): θ = (µ, σ2),

f(x|θ) = exp{−1

2

x2

σ2
+

xµ

σ2
− 1

2

µ2

σ2
− log σ − 1

2
log 2π},

k = 2, A1(θ) = 1/σ2, B1(x) = −1
2
x2, A2(θ) = µ/σ2, B2(x) = x,C(x) =

0, D(θ) = −1
2
[log(2πσ2) + µ2/σ2]. The natural conjugate family is

f(θ; a1, a2, d) = exp{a1A1(θ) + a2A2(θ) + dD(θ) + c(a1, a2, d)}

∝ (σ2)−
1
2
d exp{a1

σ2
+

a2µ

σ2
− 1

2
dµ2σ2}.

The exponent is σ2 times

−1

2
d(µ2 − 2a2µ

d
+ a1) = −1

2
d[(µ− a2

d
)2 − a1 −

a2
2

d2
].

Writing m := a2/d, b := −a1 − a2
2/2d,

f(θ; a1, a2, d) ∝ (σ2)−
1
2
d exp{−1

2
d(µ−m)2/σ2 − b/σ2}.

For σ known, this is a normal prior for µ, as in VII.2. With neither σ nor µ
known (both parameters), this is the natural conjugate prior to the normal

N(µ, σ2). More generally, one can work with (σ2)−t in place of (σ2)−
1
2
d. Here

m, d, b (and t if present) are hyperparameters for the parameters µ, σ.

6. Shrinkage [O’H] 6.42, p. 159].
In the Bayesian paradigm the posterior gives a compromise between prior

and likelihood. This ‘pulls’ the likelihood towards the prior, so ‘pulls’ a clas-
sical estimate towards a prior estimate. Similarly with several parameters. It
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is thus typical of the Bayesian paradigm that estimators are less spread out
than in the classical paradigm, a phenomenon known as shrinkage. Similar
shrinkage effects occur in higher dimensions – the James-Stein phenomenon.

7. Invariance and Jeffreys priors.
Suppose we work with a parameter θ, with information per reading I(θ) =

E[(ℓ′(θ)2] =
∫
((log f)θ)

2f(θ). If we reparametrise to ϕ := g(θ), then as
∂/∂ϕ = (dθ/dϕ)(∂/∂ϕ),

I(ϕ) = (dθ/dϕ)2I(θ).

The idea of choosing a prior which is large where the information is large
is very attractive (and reminiscent of maximum-likelihood estimation!). Jef-
freys suggested choosing a prior of the form

π(θ) ∝
√

I(θ)

– the square root to make the prior invariant under reparametrisation:

π(ϕ)dϕ ∝
√
I(ϕ)dϕ =

√
I(θ)dθ ∝ π(θ)dθ : π(ϕ)dϕ = π(θ)dθ

(both sides integrate to 1, so we can take equality here). There is an ex-
tension to higher dimensions, using the Fisher information matrix and the
square root of the modulus of its determinant.

Bayesian procedures are in general not invariant under reparametrisa-
tion! This can be seen as a drawback, but Bayesians argue that one needs
to incorporate a loss function (or utility function), and one should seek a
parametrisation that suits this loss function.
Note. Sir Harold JEFFREYS (1891-1989) was primarily a geophysicist, and
wrote an influential book The Earth: Its Origin, History and Physical Con-
stitution, 19241. He was also a pioneer of Bayesian statistics, and wrote an
early book on it, Theory of probability (1st ed. 1939, 2nd ed. 1960, 3rd
ed. 1983). He also wrote (with his wife) ‘Jeffreys and Jeffreys’, Methods of
mathematical physics, CUP, 1946.

8. The Bayes linear estimator.
If d(x) is a linear function, a+ b′z, where z = z(x) and b are vectors, the

1Jeffreys was the first to suggest that the earth’s core is liquid – but he was a strong
opponent of continental drift!
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quadratic loss is

D = E[(a+ b′z − θ)2]

= E[a2 + 2ab′z + b′zz′b− 2aθ − 2b′zθ + θ2]

= a2 + 2ab′Ez + b′E(zz′)b− 2aEθ − 2b′E(zθ) + E(θ2).

Add and subtract [E(θ)]2, (b′Ez)2 = b′EzEz′b and 2b′EzEθ. Write V :=
var z = E(zz′) − EzEz′ for the covariance matrix of z, c := cov(θ, z) =
E(zθ)− EzEθ for the covariance vector between θ and the vector z.

D = (a+ b′Ez − Eθ)2 + b′(varz)b− 2b′cov(z, θ) + varθ :

D = (a+ b′Ez − Eθ)2 + b′V b− 2b′c+ varθ. (1)

Write b∗ := V −1c, D∗ := var(θ)− c′V −1c. Then this becomes

D = (a+ b′Ez − Eθ)2 + (b− b∗)′V (b− b∗) +D∗ (∗)

(the quadratic terms check as b∗TV b∗ = cTV −1V V −1c = cTV −1c, the linear
terms as c = V b∗).

The third term on the right in (∗) does not involve a, b, while the first
two are non-negative (the first is a square, the second a quadratic form with
matrix V , non-negative definite as V is a covariance matrix). So the expected
quadratic loss D is minimised by choosing b = b∗, a = −b∗′Ez + Eθ. Then

d(x) = Eθ + cV −1(z − Ez), c := cov(z, θ), V := var(z).

This gives the Bayes linear estimator of θ based on data z = z(x). This is
the best approximation to the posterior mean (in the sense of mean-square
error) among the class of linear estimators (in z = z(x)).
Distributional assumptions.

The Bayes linear estimator depends only on first and second moments:
Eθ, Ez, c = cov(z, θ), V = var(z). So we do not need to know the full
likelihood, just the first and second moments of (θ, z(x)), the parameter and
the function z in which we want the estimator to be linear.
Application. We have met this in the Kalman filter (V.11).

9. Bayesian solution of the equity premium puzzle.
Following Markowitz (I.5), we should diversify our financial savings into

a range of assets in our portfolio – including cash (invested risklessly – e.g.,
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by buying Government bonds, or ‘gilts’, or putting it in the bank or building
society – which we suppose riskless here, discounting such disasters as the
Icelandic banking crisis, Northern Rock, RBS etc.) and risky stock. There
is no point in taking risk unless we are paid for it, so there will be an excess
return – equity premium – µ−r of the risky stock (return µ) over the riskless
cash (return r), to be compared with the volatility σ of the risky stock via
the Sharpe ratio (or market price of risk) λ := (µ − r)/σ). Historical data
show that the observed excess return seems difficult to explain.

A Bayesian solution to this ‘equity premium puzzle’ (the term is due to
Mehra & Prescott (1985)) has been put forward by Jobert, Platania and
Rogers: there is no equity premium puzzle, if one uses a Bayesian analysis
to reflect fully one’s uncertainty in modelling this situation. See
[JPR] A. JOBERT, A. PLATANIA & L. C. G. ROGERS, A Bayesian so-
lution to the equity premium puzzle. Preprint, Cambridge (available from
Chris Rogers’ homepage: Cambridge University, Statistical Laboratory).
The Twenties Example [JPR]. One observes daily prices of a stock for T
years, with an annual return rate of 20% and an annual volatility of 20%.
How large must T be to give confidence intervals of ±1% for (i) the volatility,
(ii) the mean? Answers: (i) about 11; (ii) about 1,550!!

This illustrates what is called mean blur; see e.g.
D. G. LUENBERGER, Investment Science, OUP, 1997.
Rough explanation: for the mean, only the starting and final values matter
(so effective sample size is 2); for the volatility, everything matters.

For non-Bayesian approaches, see e.g. Maenhout, Rev. Fin. Studies
(2004), Barillas, Hansen & Sargent, J. Econ. Th. (2009).

10. Bayesian Non-parametrics.
We have discussed Bayesian statistics at some length in this Ch. VII, and

(more briefly) Non-parametric statistics in Ch. VI. It is natural to wonder
whether the two can be combined. This is indeed happening. The process has
been enormously helped by the growth of modern computer power. Those
interested can investigate this for themselves: e.g., Googling ”Bayesian non-
parametrics” produced 7,990 hits and ”Bayesian nonparametrics” 30,700.
There are lots of connections with machine learning, for example, and lots
of applications.

NHB 19.12.2014
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