
smfd2.tex
Day 2. 17.10.2014

3. Large-sample properties of maximum-likelihood estimators
We assume the following regularity conditions:

(i) differentiability under the integral sign twice (as before);
(ii) finite positive Fisher information per reading I(θ);
(iii) In some neighbourhood N of the true parameter value θ0,∣∣∣ ∂3

∂θ3
log f(x; θ)

∣∣∣ ≤ H(x), where supθ∈NEθH(X) ≤ M < ∞.

Theorem (Cramér, 1946). Under the above regularity conditions, the MLE
θ̂ of the true parameter value θ0 is
(i) strongly consistent: θ̂ → θ0 as n → ∞, a.s.,
(ii) asymptotically efficient: var θ̂ ∼ 1/(nI(θ)), the Cramér-Rao lower bound;

(iii) asymptotically normal:
√
nI(θ0)(θ̂ − θ0) → Φ = N(0, 1) (n → ∞).

Proof. (i) We use Taylor’s theorem to expand the score function s = ℓ′ about
θ = θ0:

s(θ) = s(θ0) + (θ − θ0)s
′(θ0) +

1

2
(θ − θ0)

2s′′(θ∗),

for some θ∗ between θ0 and θ. Since ℓ(x1, . . . , xn; θ) =
∑n

1 ℓ(xi; θ), and simi-
larly for s = ℓ′, this says (on dividing by n)

s(x; θ)/n =
1

n

n∑
1

s(xi; θ) =
1

n

n∑
1

s(xi; θ0) + (θ − θ0).
1

n

n∑
1

s′(xi; θ0)

+
1

2
(θ − θ0)

2.
1

n

n∑
1

s′′(xi; θ
∗). (∗)

The first term on the RHS is an average of iid rvs with mean Es(θ0) = 0, by
(a) of I.2. So by SLLN, this → 0 a.s. as n → ∞. Similarly, by SLLN the
second term on RHS converges a.s. to

(θ − θ0)s
′(θ0) = −I(θ0)(θ − θ0).

The third term on RHS of (∗) is bounded by 1
2
M(θ− θ0)

2, by our regularity
assumption (iii) (as s′′ = ℓ′′′). For θ close enough to θ0, this is negligible wrt
the second term. So RHS ∼ second term:

RHS ∼ −I(θ0).(θ − θ0).
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Since I(θ0) ∈ (0,∞), by (ii), the sign of the RHS is thus opposite to that of
θ − θ0, for large enough n and θ close enough to θ0. For such n and θ, RHS
changes sign in every neighbourhood of θ0 (just take θ through θ0). But LHS
= RHS, so the LHS too changes sign in every neighbourhood of θ0, for large
enough n. This says that there is a root θ̂ = θ̂n of the likelihood equation

s(x; θ) = 0 (LE)

in every neighbourhood of θ0.
Since this neighbourhood can be arbitrarily small, we must have

θ̂ = θ̂n → θ0 (n → ∞) a.s.,

proving the strong consistency of the MLE θ̂ and (i).
Now put θ = θ̂ in (∗). The LHS is 0, by definition of MLE (recall

s = ℓ′ = (logL)′). The third term on RHS is negligible wrt the second term,
because of the extra factor θ − θ0 → 0, by (i). So we can neglect this term,
leaving

0 ∼ 1

n

n∑
1

s(xi; θ0) + (θ̂ − θ0).
1

n

n∑
1

s′(xi; θ0).

Rearranging,

√
nI(θ0)(θ̂ − θ0) ∼

[
∑n

1 s(xi; θ0)]/
√
nI(θ0)

[
∑n

1 −s′(xi; θ0)]/(nI(θ0))
(n → ∞). (∗∗)

By CLT, the numerator on RHS → Φ = N(0, 1), as s(xi; θ0) are iid with
mean 0 and variance I(θ0). By LLN, the denominator on RHS → 1 a.s., as
−s′(xi; θ0) are iid with mean I(θ0) (by I.2, Prop.). Combining, RHS → Φ.
So LHS → Φ:√

nI(θ0)(θ̂ − θ0) → Φ = N(0, 1) : var (θ̂ − θ0) = var θ̂ ∼ 1/(nI(θ0)),

the Cramér-Rao bound, so θ̂ is asymptotically efficient, proving (ii), and θ̂ is
asymptotically normal, proving (iii). //

The regularity conditions above can be weakened, at the cost of a harder
proof, but some regularity conditions are needed. The phrase ”under suitable
regularity conditions” recurs with remorseless regularity in textbook treat-
ments of large-sample properties of MLEs.
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Example. Uniform U(a, b), or U(θ − 1
2
, θ + 1

2
). See IS II, where we showed

that here the MLEs converge at a different rate (n, not
√
n) and to a different

limit (exponential, or symmetric exponential, not normal).

Vector Parameters.
If θ = (θ1, . . . , θr) is an r-dimensional (vector) parameter, one can proceed

as above. We now obtain the (Fisher) information matrix

I(θ) = (Iij(θ))
r
i,j=1,

where we use suffix notation for partial differentiation (gi := ∂g/∂θi, etc.)
and

Iij(θ) := E[ℓi(θ)ℓj(θ)] = E[−ℓij(θ)].

Under regularity conditions as above (we assume the information matrix is
positive definite, so we can invert it), we again obtain consistency, asymptotic
efficiency and asymptotic normality:

θ̂ ∼ Nr(θ, n
−1I−1(θ)).

Stochastic process versions.
The true context for results such as the above is not random variables

as above, but stochastic processes. Infinite-dimensional versions are possible
(and needed), in which conclusions are drawn, not for one time-point at a
time, but for infinitely many together – say, all t ∈ [0, 1], or all t ≥ 0. We
shall develop these ideas later (Day 3). Meanwhile, we mention our main
source for such things,
[vdVW] Aad van der VAART and Jon A. WELLNER, Weak convergence
and empirical processes, with applications to statistics, Springer, 1996.
In particular, [vdVW] contains detailed accounts of M -estimators (3.2) (‘M
for maximum’ – generalising MLEs), and Z-estimators (3.3) (‘Z for zero’:
the MLE is a zero of the likelihood equation ℓ′ = 0).

Fisher’s method of scoring.
Here we replace s′(θ∗) by E[s′(t)] = −I(t) (we know θ∗ ∼ t ∼ θ0 by

above). Then our next (better) approximation is

θ̂ ∼ t− s(t)/E[s′(t)] = t+ s(t)/I(t).

This is Fisher’s method of scoring. As always with iterations: to implement
this numerically, one needs a ”do-loop” (while .... do ...., else stop).
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Exercise. Implement this in C++ (the ”official programming language” for
this course), for the Cauchy location family (Problems 3 Q3). First, choose
a µ (arbitrarily – or, by sampling from a chosen distribution). Then, sample
from the Cauchy distribution with this µ. Then, perform the above iterations
(by either, or better still both, of the Newton-Raphson and Fisher methods),
to estimate this µ from the data.

Reparametrisation and the Delta Method.
Suppose we are using parameter θ, but wish to change to some alternative

parametrisation, g(θ), where g is continuously differentiable. A CLT for θ
such as √

n(Tn − θ) → N(0, σ(θ)2)

(as holds above, with Tn the MLE θ̂ based on a sample of size n and σ2(θ) =
1/I(θ)) transforms into a CLT for g(θ):

√
n(g(Tn)− g(θ)) → N(0, [g′(θ)σ(θ)]2).

For,
g(Tn)− g(θ) = (Tn − θ)(g′(θ) + ϵn),

with ϵn a (random) error term. One can show this to be negligible for large
n, so

g(Tn)− g(θ) ∼ (Tn − θ)g′(θ).

Since var(cX) = c2 var X, the result follows.
This is called the delta method, and is often useful. It can be extended

from random variables to stochastic processes (i.e., from one or finitely many
to infinitely many dimensions), and we shall meet it again later.

4. Sufficiency and Minimal Sufficiency

Recall (IS II) the idea of sufficiency as data reduction, and minimal suffi-
ciency as data reduction carried as far as possible without loss of information.
We now formalise this.

Definition (Fisher, 1922). To estimate a parameter θ from data x, a statistic
T = T (x) is sufficient for θ if the conditional distribution of x given T = T (x)
does not depend on θ.
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Interpretation. Always use what you know. We know T : is this enough? The
conditional distribution of x given T represents the information remaining in
the data x over and above what is in the statistic T . If this does not involve
θ, the data cannot have anything left in it to tell us about θ beyond what is
already in T .

The usual – because the easiest – way to tell when one has a sufficient
statistics is the result below. The sufficiency part is due to Fisher in 1922,
the necessity part to J. NEYMAN (1894-1981) in 1925.

Theorem (Factorisation Criterion; Fisher-Neyman Theorem. T is
sufficient for θ if the likelihood factorises:

f(x; θ) = g(T (x); θ)h(x),

where g involves the data only through T and h does not involve the param-
eter θ.

Proof. We give the discrete case; the density case is similar.
Necessity. If such a factorisation exists,

Pθ(X = x) = g(T (x), θ)h(x),

then given t0,

P (T = t0) =
∑

x:T (x)=t0

Pθ(X = x) =
∑

x:T (x)=t0

g(T (x), θ)h(x) = g(t0, θ)
∑

x:T (x)=t0

h(x).

So Pθ(X = x|T = t0) = Pθ(X = x & T = T (X) = t0)/Pθ(T = t0) is 0 unless
T (x) = t0, in which case it is

Pθ(X = x)/Pθ(T = t0) =
g(t0; θ)h(x)

g(t0; θ)
∑

T (x)=t0 h(x)
=

h(x)∑
T (x)=t0 h(x)

.

This is independent of θ, so T is sufficient.
Sufficiency. If T is sufficient, the conditional distribution of X given T is
independent of θ:

Pθ(X = x|T = t0) = c(x, t0), say. (i)

The LHS is P (X = x & T (X) = t0)/P (T = t0). Now the numerator is 0
unless t0 = T (X). Defining c(x, t0) to be 0 unless t0 = T (x), we have (i) in
all cases, and now

c(x, t0) = Pθ(X = x)/P (T (X) = t0),
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as ”& T (X) = t0 = T (x)” is redundant. So now

Pθ(X = x) = Pθ(T (X) = t0)c(x, t0),

a factorisation of the required type. //

Cor. If U = a(T ) with a injective (one-to-one), T sufficient implies U suffi-
cient.

Proof. T = a−1(U) as a is one-to-one, so

f(x; θ) = g(a−1(U); θ)h(x) = G(U(x); θ)h(x),

say, a factorisation of Fisher-Neyman type, so U is sufficient. //

So if, e.g. T is sufficient for the population variance σ2,
√
T is sufficient

for the standard deviation σ, etc.

Example: Normal families N(µ, σ2).
(i) The joint likelihood factorises into the product of the marginal likelihoods:

f(x;µ, σ2) =
1

(2π)
1
2
nσn

. exp{−1

2

n∑
1

(xi − µ)2/σ2}. (1)

Since x̄ := 1
n

∑n
1 xi,

∑
(xi − x̄) = 0, so∑

(xi−µ)2 =
∑

[(xi−x̄)+(x̄−µ)]2 =
∑

(xi−x̄)2+n(x̄−µ)2 = n(S2+(x̄−µ)2) :

the likelihood is

L = f(x;µ, σ2) =
1

(2π)
1
2
nσn

. exp{−1

2
n(S2 + (x̄− µ)2)/σ2}. (2)

By the Factorisation Criterion, (x̄, S2) is (jointly) sufficient for (µ, σ2). So
for a normal family: only two numbers are needed for the two parameters
µ, σ2, namely x̄, S2 (equivalently,

∑
X,

∑
X2 – note that good programmable

pocket calculators have keys for
∑

X,
∑

X2 for this purpose!)
(ii) Now suppose σ is known (so counts as a constant, not a parameter).
Then (2) says that x̄ is now sufficient for µ.
(iii) Now suppose µ is known. Then (1) says that now

∑
(xi−µ)2 is sufficient
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for σ2.

Minimal Sufficiency. Sufficiency enables data reduction – reducing from n
numbers (n is the sample size – the bigger the better) to a much smaller
number (as above). Ideally, we would like to reduce as much as possible,
without loss of information. How do we know when we have done this?

Recall that when applying a function, we lose information in general (we
do not lose information only when the function is injective – one-to-one, when
we can go back by applying the inverse function). This leads to the following

Definition. A sufficient statistic T is minimal (sufficient) for θ if T is a
function of any other sufficient statistic T ′.

Minimal sufficient statistics are clearly desirable (‘all the information with
no redundancy’). The following result gives a way of constructing them.

Theorem (Lehmann & Scheffé, 1950). If T is such that the likelihood
ratio f(x; θ)/f(y; θ) is independent of θ iff T (x) = T (y), then T is a minimal
sufficient statistic for θ.

We quote this. To find minimal sufficient statistics, we form the likeli-
hood ratio, and seek to eliminate the parameters. This works very well in
practice, as examples show (see Problems 2). We quote also
Basu’s theorem (Debabrata Basu in 1955).

Any boundedly complete sufficient statistic (we do not define the term
‘boundedly complete’ here) is independent of any ancillary statistic. This
is often used to show independence of two statistics: show one boundedly
complete sufficient and the other ancillary. Examples (see IS II):
N(µ, σ2); independence of X̄ and S2;
U(θ − 1

2
, θ + 1

2
): independence of mid and ran.

5. Location and scale; Tails
In one dimension, the mean µ gives us a natural measure of location for

a distribution. The variance σ2, or standard deviation (SD) σ, give us a
natural measure of scale.
Note. The variance has much better mathematical properties (e.g., it adds
over independent, or even uncorrelated, summands). But the SD has the
dimensions of the random variable, which is better from a physical point of
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view. As moving between them is mathematically trivial, we do so at will,
without further comment.
Example: Temperature. In the UK, before entry to the EU (or Common
Market as it was then), temperature was measured in degrees Fahrenheit, F
(freezing point of water 32oF , boiling point 212oF (these odd choices are only
of historical interest – but dividing the freezing-boiling range into 180 parts
rather than 100 is better attuned to homo sapiens being warm-blooded, and
most people having trouble with decimals and fractions!) The natural choice
for freezing is 0; 100 parts for the freezing-boiling range is also natural when
using the metric system – whence the Centigrade (= Celsius) scale. Back
then, one used F for ordinary life, C for science, and the conversion rules

C =
5

9
(F − 32), F =

9

5
C + 32

were part of the lives of all schoolchildren (and the mechanism by which
many of them grasped the four operations of arithmetic!)
Pivotal quantities.

A pivotal quantity, or pivot, is one whose distribution is independent of
parameters. Pivots are very useful in forming confidence intervals.
Defn. A location family is one where, for some reference density f , the
density has the form f(x−µ); here µ is a location parameter. A scale family
(usually for x ≥ 0) is of the form f(x/σ); here σ is a scale parameter. A

location-scale family is of the form f(x−µ)
σ

).
Pivots here are

X̄ − µ (location); X̄/σ (scale);
X̄ − µ

σ
(location-scale).

Examples. The normal family N(µ, σ2) is a location-scale family.
The Cauchy location family is

f(x− µ) =
1

π[1 + (x− µ)2]
.

In higher dimensions, the location parameter is the mean µ (now a vector);
the scale parameter is now the covariance matrix

Σ = (σij), σij := cov(Xi, Xj) = E[(Xi − EXi)(Xj − EXj)].
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