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6. Complements
1. CAPM.

All of this is highly relevant to Mathematical Finance. Finance was an
art rather than a science before the 1952 PhD thesis of Harry MARKOWITZ
(1927-; Nobel Prize 1990). Markowitz gave us two insights that have become
so much part of the ambient culture that it is difficult to realise that they
have not always been there. These are:
(i). Think of risk and return together, not separately. Now return corre-
sponds to mean (= mean rate of return), risk corresponds to variance –
hence mean-variance analysis (hence also the efficient frontier, etc. – one
seeks to maximise return for a given level of risk, or minimise risk for a given
return rate).
(ii). Diversify (don’t ‘put all your eggs in one basket’). Hold a balanced port-
folio – a range of risky assets, with lots of negative correlation – so that when
things change, one’s losses on some assets will tend to be offset by gains on
others.
Markowitz’s work led on to the Capital Asset Pricing Model (CAPM – ”cap-
emm”) of the 1960s (Jack TREYNOR in 1961/62, William SHARPE (1934-;
Nobel Prize 1990), John LINTNER (1965), Jan MOSSIN (1966)), the first
phase of the development of Mathematical Finance. The second phase was
triggered by the Black-Scholes formula of 1973 and its follow-up by Merton
(Fischer BLACK (1938-95); Myron SCHOLES (1941-; Nobel Prize 1997);
Robert C. MERTON (1944-; Nobel Prize 1997)).

As a result of Markowitz’s work, the vector-matrix parameter (µ,Σ) is
accepted as an essential part of any model in mathematical finance. As a
result of CAPM, regression methods (Ch. IV) are an essential part of any
portfolio management programme. The x-axis is used to represent the re-
turn for the market (or a portfolio) as a whole, the y-axis for the return for
a particular asset – whence phrases such as ‘the quest for high beta’.
2. Elliptical distributions.

The normal density is a multiple of exp{−1
2
(x−µ)2/σ2}. In higher dimen-

sions, we shall see (Ch. III) that this is replaced by exp{−1
2
(x−µ)TΣ−1(x−

µ)}. Now the matrices Σ, Σ−1 are positive definite (PD) (III.1), so the con-
tours

(x− µ)TΣ−1(x− µ) = const.
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are ellipsoids. So the normal distribution is called elliptical (or elliptically
contoured). It is extremely useful, but suffers from various deficiencies in
practice, e.g.:
(i) It is symmetric. Many financial data sets show asymmetry, or skew. This
is partly (or even largely) a reflection of the asymmetry between profit and
loss. Windfall profits are pleasant; ‘windfall losses’ are dangerous, indeed
potentially fatal (to the firm – they can lead to bankruptcy). On an indi-
vidual, or psychological, level: most people get more pain from a given loss
than they get pleasure from the same amount of profit. One can actually see
skew present, in such things as the ‘volatility smirk’ (VI.2.3 D9).
2. It has extremely thin tails. Most financial data sets have tails that are
much fatter than the ultra-thin normal tails. Take, for example, asset returns
(= profit or loss, scaled by the initial asset price) over a period, the return
period. Their statistical properties vary dramatically with the return period.
Bear in mind that the net profit/loss over a period is the sum of those over
shorter periods.
(i) for long return periods (monthly, say – the Rule of Thumb is that 16
trading days suffice), the CLT applies, and asset returns are approximately
normal (‘aggregational Gaussianity) – log-density a parabola (so density de-
cays like the exponential of a square);
(ii) for intermediate return periods (daily, say), a commonly used model is
the generalised hyperbolic (GH) – log-density a hyperbola, with linear asymp-
totes, so density decays like the exponential of a linear function);
(iii) for high-frequency returns (‘tick data’, say – every few seconds), for rea-
sons related to universality in Physics, the density typically decays like a
power (as with the Student t distribution – recall that t(n), the Student-t
with n degrees of freedom (df), has t(n) → Φ = N(0, 1) as n → ∞ (Problems
1 Q4).

One can handle these cases together by using a semi-parametric model.
The parametric part is (µ,Σ); the non-parametric part is a function – the
density generator – g(.) governing the shape of the density, in particular its
tail behaviour (in the normal case g(.) = c. exp{−1

2
.}). This combination

gives a semi-parametric model. It has the pleasant (and unusual) feature
that ignorance of one part of the model imposes no penalty on the efficiency
with which one can estimate the other part. For details, see e.g. [BFK].
3. Groups and invariance.

In many statistical problems, we have the action of some group natu-
rally occurring as part of the setting of the problem. For instance, in any
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statistical study of global warming, our data will consists of measurements
of temperature – but, temperature lacks a natural measure of location or
of scale. Accordingly, our methods should accommodate this by behaving
sensibly under change of location and scale. On the line, change of location
and scale is effected by a non-singular linear transformation x 7→ ax + b,
a ̸= 0. In higher dimensions, this leads to the affine group, of non-singular
linear transformations x 7→ Ax + b (A an invertible matrix, b a vector). In
financial applications, (A, b) will typically be (Σ, µ), where Σ is the covari-
ance matrix and µ is the mean return vector of our portfolio of risky assets.
Other relevant groups include the Euclidean motion group, the set of all lin-
ear transformations x 7→ Ox + b, where O is an orthogonal matrix. The
Euclidean motion group corresponds to the freedom to change from one set
of axes to another in Euclidean space when representing rigid bodies; the
affine group captures the sense in which an ellipsoid (say) in one coordinate
system will be an ellipsoid in any (and similarly for hyperboloids, etc.)

A location estimator should not depend on our choice of origin – should
be invariant under changes of location; similarly for scale estimator under
changes of scale. In the context of CAPM, where we carry (µ,Σ) as a pa-
rameter, our estimators should transform appropriately under the action of
the affine group. For the relevant theory here, see e.g.
Morris L. EATON, Group invariance: Applications in statistics, IMS, 1989.
4. Exponential families

A family {f(x, θ)} of densities with parameter θ forms an exponential
family if f has the form

f(x, θ) = c(θ)h(x) exp{R(θ).T (x)}

for scalar functions c, h and vector functions R, T . One may check that all the
standard examples encountered above are of this form (except the Cauchy
location family). It turns out that these are the families for which estima-
tion of parameters works well. We return to them later, in connection with
generalised linear models in Regression, and in Bayesian methods (VII.7.4).
For a monograph treatment, see e.g.
Lawrence D. BROWN, Fundamentals of statistical exponential families; with
applications in statistical decision theory. IMS Lecture Notes 9, 1986.
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II. HYPOTHESIS TESTING

1. Formulation
The essence of the scientific method is to formulate theories, and test

them experimentally. Thus a typical scientific experiment will test some the-
oretical prediction, or hypothesis.

We can never prove that a scientific theory, or hypothesis, is true. To
take an extreme case, look at Newton’s Laws of Motion (Sir Isaac NEW-
TON (1642-1727); Principia, 1687). This was the mathematics that made
possible the Scientific Revolution, and Newton’s Laws were regarded as un-
challengeable for more than two centuries. But in the 20th century, Quantum
Mechanics showed that Newton’s Laws are approximate only – useful in the
macroscopic case, but inadequate at the atomic or subatomic level.

With this in mind, we should treat established theory with respect, and
not replace it lightly (or textbooks would become too ephemeral!), but not
regard it as sacrosanct: scientific theory is provisional, and evolving. This is
part of the great strength of the scientific method.

It is customary, and convenient, to represent the existing theory by a null
hypothesis, H0, and to test it against a candidate new theory, an alternative
hypothesis, H1.

A hypothesis is simple if it completely specifies the parameter(s); e.g.,

H0 : θ = θ0,

composite otherwise, e.g.
H0 : θ > θ0.

As above, there is an asymmetry between H0 and H1: H0 is the ‘default
option’. We will discard H0 in favour of H1 only if the data gives us convinc-
ing evidence to do so.
Legal analogy.

Hypothesis test ↔ Criminal trial

Null hypothesis H0 ↔ accused

H0 accepted till shown untenable ↔ accused innocent until proved guilty

Accept (= do not reject) H0 ↔ not guilty verdict
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Reject H0 (for H1) ↔ guilty verdict

Data ↔ evidence

Statistician ↔ jury

Significance level α ↔ probability of convicting an innocent person.

Significance level.
The above introduces this important term. Statistical data (like legal

evidence) is random (if we re-sampled, we would get different data!) So we
can never conclude with certainty anything from data – including that H0

is false. But we cannot go from this to saying that we can never reject H0

– or scientific progress would halt, being frozen at the current level. We
strike a sensible balance by choosing some small probability, α, of rejecting
a valid null hypothesis, and working with that. We call α the significance
level. Common choices are α = 0.05, or 5%, for ordinary work, and α = 0.01,
or 1%, for accurate work. But note that the choice of α is down to you,
the statistician, so is subjective. We like to think of Science as an objective
activity! So the whole framework of Hypothesis Testing is open to question –
indeed, it is explicitly rejected by Bayesian statisticians (see Ch. VII below).
(But then, the concept of a criminal trial is explicitly rejected in some forms
of political thinking, such as Anarchism.)

There are two types of error in Hypothesis Testing, called Type I error
– false rejection (rejecting H0 wrongly, probability α – cf. convicting an
innocent person), and Type II error – false acceptance (accepting H0 when
it is false, probability β, say – cf. acquitting a guilty person). The usual
procedure is to fix α, and then try to minimise β for this α.

Usually, we decide on a suitable test statistic, T = T (X), and reject H0

if the data X falls in the critical region (or rejection region), R say, where T
falls in some set S. Then abbreviating Pθi to Pi:

α = P0(X ∈ R), β = P1(X /∈ R).

We often look at
1− β = P1(X ∈ R),

the probability that the test correctly picks up that H0 is false. We can think
of this as the sensitivity of the test; the technical term used is the power of
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the test. This depends on θ (grossly wrong hypotheses are easier to reject
than marginally wrong ones!);

θ 7→ 1− β(θ)

is called the power function of the test.
Usually, we fix the significance level α and the sample size n, and then

seek to choose the rejection region R so as to maximise the power 1 − β
[minimise the prob. β of Type II error, false acceptance].

The Likelihood Principle (LP) says that all that matters is the likelihood
L, which is

L0 := L(X; θ0) if H0 is true;
L1 := L(X; θ1) if H1 is true.

The idea of maximum likelihood estimation is that the data supports θ if
L(X; θ) is large. This suggests that a good test statistic for H0 v.H1 would
be the likelihood ratio (LR)

λ := L0/L1 = L(X; θ0)/L(X; θ1),

rejecting H0 for H1 if λ is too small – that is, using the critical region

R := {X : λ(X) ≤ c},

where c is chosen so that
α = P0(X ∈ R).

In the density case, such a region does exist. In the discrete case, it may
not: the probability may ‘jump over’ the level α if one more point is in-
cluded. One can allow for this by randomisation (including the ‘extra point’
with some probability so as to get α right) but we ignore this, and deal with
the density case – the important case in practice.

2. The Neyman-Pearson Lemma
The simple suggestion above is in fact best possible. This is due to J.

NEYMAN (1894-1981) and E. S. PEARSON (1895-1980) in 1933.

Theorem (Neyman-Pearson Lemma). To test a simple null hypothe-
sis H0 : θ = θ0 against a simple alternative hypothesis H1 : θ = θ1 at
significance level α, a critical region of the form

R := {X : λ ≤ c} = {X : L(X; θ0)/L(X; θ1) ≤ c}, α = P0(λ ≤ c)
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is best possible (most powerful): the β = β(R) for this R is as small as
possible for given α and n.

Proof. If S is any other critical region with the same significance level (or
‘size’) α, we need to show β(S) ≥ β(R), i.e.∫

Sc

f(x; θ1)dx ≥
∫
Rc

f(x; θ1)dx :

∫
Sc

f(θ1) ≥
∫
Rc

f(θ1),

or as densities integrate to 1,∫
S

f(θ1) ≤
∫
R

f(θ1). (∗)

But∫
R

f(θ1)−
∫
S

f(θ1) =

∫
R∩S

f(θ1) +

∫
R\S

f(θ1)−
∫
R∩S

f(θ1)−
∫
S\R

f(θ1)

=

∫
R\S

f(θ1)−
∫
S\R

f(θ1).

Now
λ = L0/L1 ≤ c (X ∈ R), > c (X /∈ R),

or reverting from ”L” to ”f” notation,

f(θ1) ≥ c−1f(θ0) in R, < c−1f(θ0) in Rc.

As R \ S ⊂ R, this gives∫
R\S

f(θ1) ≥ c−1

∫
R\S

f(θ0).

Similarly,∫
S\R

f(θ1) ≤ c−1

∫
S\R

f(θ0), −
∫
S\R

f(θ1) ≥ −c−1

∫
S\R

f(θ0).

Add:∫
R

f(θ1)−
∫
S

f(θ1) =

∫
R\S

f(θ1)−
∫
S\R

f(θ1) ≥ c−1
[∫

R\S
f(θ0)−

∫
S\R

f(θ0)
]
.

(a)
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But both R and S have size (θ0-probability) α:

α =

∫
R

f(θ0) =

∫
R∩S

f(θ0) +

∫
R\S

f(θ0),

α =

∫
S

f(θ0) =

∫
R∩S

f(θ0) +

∫
S\R

f(θ0).

Subtract: ∫
R\S

f(θ0) =

∫
S\R

f(θ0).

This says that the RHS of (a) is 0. Now (a) gives (∗). //

Note. The Neyman-Pearson Lemma (NP) is fine as far as it goes – simple v.
simple. But most realistic hypothesis testing situations are more complicated.
Fortunately, NP extends to some important cases of simple v. composite; see
below. We turn to composite v. composite later, using likelihood ratio tests
(LR).
Sufficiency. If T is sufficient for θ,

L(X; θ) = g(T (X; θ)h(X),

by Fisher-Neyman. Dividing,

λ := L(θ0)/L(θ1) = g(T (X; θ0)/g(T (X; θ1)

is a function of T only. So if we have a sufficient statistic T , we lose nothing
by restricting to test statistics which are functions of T .
Example.
1. Normal means, N(µ, σ2), σ known.

To test H0 : µ = µ0 v. H1 : µ = µ1, where µ1 < µ0. It turns out
that the NP critical region is of the form ‘reject if X̄ is too small’. (This is
intuitive, as µ1 < µ0.) How small is too small? Because the significance level
α involves probabilities under H0, the critical region is the same for all µ1,
provided only that µ1 < µ0 (if instead µ1 > µ0, the critical region is ‘reject if
X̄ is too big’). That is, the NP test is most powerful, uniformly in µ1 for all
µ1 < µ0. We call the critical region uniformly most powerful (UMP) for the
simple null hypothesis H0: µ = µ0 v. the composite alternative hypothesis
H1 : µ < µ0. Similarly for H1 : µ > µ0.
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