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We turn now to a technical result, which is important in reducing n-
dimensional problems to one-dimensional ones.

Theorem (Cramér-Wold device). The distribution of a random n-vector
X is completely determined by the set of all one-dimensional distributions
of linear combinations t7 X = > ;tiXi, where t ranges over all fixed n-vectors.

Proof. Y :=tTX has CF
oy (t) .= Eexp{itY} = Eexp{itt’ X}.

If we know the distribution of each Y, we know its CF ¢y (¢). In particular,
taking t = 1, we know E exp{it” X}. But thisis the CF of X = (X1, -+, X,,)T
evaluated at t = (t1,---,%,)". But this determines the distribution of X. //

Thus by the Cramér-Wold device, to define an n-dimensional distribution
it suffices to define the distributions of all linear combinations.

The Cramér-Wold device suggests a way to define the multivariate normal
distribution. The definition below seems indirect, but it has the advantage
of handling the full-rank and singular cases together (p = +1 as well as
—1 < p < 1 for the bivariate case).

Definition. An n-vector X has an n-variate normal distribution iff a’ X has
a univariate normal distribution for all constant n-vectors a.

Proposition. (i) Any linear transformation of a multinormal n-vector is
multinormal,

(ii) Any vector of elements from a multinormal n-vector is multinormal. In
particular, the components are univariate normal.

Proof. (i) f Y = AX+c (A an m x n matrix, ¢ an m-vector) is an m-vector,
and b is any m-vector,
b’Y = b’ (AX +c) = (bTA)X + blec.

If a = ATb (an m-vector), al X = b AX is univariate normal as X is multi-
normal. Adding the constant b”c, b?Y is univariate normal. This holds for



all b, so Y is m-variate normal.
(ii) Take a suitable matrix A of 1s and 0s to pick out the required sub-vector.

Theorem 1. If X is n-variate normal with mean g and covariance matrix
3, its CF is

1
P(t) := Eexp{it’ X} = exp{it’pu — étTZt}.

Proof. By Proposition 1, Y := tTX has mean tT; and variance t7Xt.
By definition of multinormality, ¥ = t?X is univariate normal. So Y is
N(t"p, t73t), so Y has CF

by (t) = Eexp{itY} = Eexp{itt’ X} = exp{itt’ p — %tQtTEt}.
Taking t = 1 (as in the proof of the Cramér-Wold device),
Eexp{it’X} = exp{it"pu — %tTEt}. //
Corollary. The components of X are independent iff 3 is diagonal.

Proof. The components are independent iff the joint CF factors into the prod-
uct of the marginal CFs. This factorization takes place, into I1; exp{ip;t; —
305,42}, in the diagonal case only. //

Recall that a covariance matrix 3 is always

(a) symmetric (0;; = i, as 0;; = cov(X;, X)),

(b) non-negative definite, written ¥ > 0: a’3a > 0 for all n-vectors a.
Suppose that X is, further, positive definite, written 3 > 0:

a’Ya>0 unless a=20.

The Multinormal Density.

If X is n-variate normal, N(u,X), its density (in n dimensions) need not
exist (e.g. the singular case p = 41 with n = 2). But if ¥ > 0 (so X!
exists), X has a density. The link between the multinormal density below
and the multinormal MGF above is due to the English statistician F. Y.
Edgeworth (1845-1926) in 1893.



Theorem (Edgeworth). If x4 is an n-vector, ¥ > 0 a symmetric positive
definite n x n matrix, then
(1)

1
PRESE
is an n-dimensional probability density function (of a random n-vector X,
say),

(i) X has CF ¢(t) = exp{it"p — ;t" St}
(iii) X is multinormal N (u, X).

fx) = expl—5(x — )5 (x — )}

Proof. Write Y := £72X (X2 exists as 3 > 0, by above). Then Y has
covariance matrix £2%(272)7. Since & = X7 and ¥ = 2%z, Y has
covariance matrix I (the components Y; of Y are uncorrelated).

Change variables as above, with y = E’%x, X = E%y. The Jacobian
is (taking A = $72) J = 9x/dy = det($2),= (detx)z by the product
theorem for determinants. Substituting, the integrand is

1 _ 1, 1 1,1 _ 1 1,1
exp{—5(x=p)" B (x=p)} = exp{—5(Z2y %> (272 p)) 27 (Bry =32 (72 )}
Writing v := E_%,u, this is

1 Ty ig—1y1 1 T
exp{—(y —v) Z2ETR(y —v)} = exp{—o(y —v) (y =)}

So by the change-of-density formula, Y has density

1 1 1
9(y) = ﬁ-|2|2-e){p{_§(y - )y —v)}.
(2m)2" |32
This factorises as | )
I ———exp{—=(y; — v 21
Gy Pl %)

So the components Y; of Y are independent N(v;,1). So Y is multinormal,
N(v,I).

(i) Taking A = B = R", [, f(x)dx = [;. 9(y)dy,= 1 as g is a probability
density, as above. So f is also a probability density (non-negative and inte-
grates to 1).

(i) X = £2Y is a linear transformation of Y, and Y is multivariate normal,
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N(v,I). So X is multivariate normal.
(i) EX = $2EY = Sy = B2 N2y = pu, covX = BreowY (T2)T =
»:I%2 = . So X is multinormal N(u, 2). So its CF is

o() = exp{itTn — t7StL /)

Note. The inverse X! of the covariance matrix X is called the concentration
matriz, K.

Conditional independence of two components X;, X; of a multinormal
vector given the others can be identified by vanishing of the (off-diagonal)
(4,7) entry k;; in the concentration matrix K. The proof needs the results
on conditioning and regression in IV.6 D6 below, and the formula for the
inverse of a partitioned matrix; see Problems 6.

Independence of Linear Forms

Given a normally distributed random vector x ~ N(u, ) and a matrix
A, one may form the linear form Ax. One often encounters several of these
together, and needs their joint distribution — in particular, to know when
these are independent.

Theorem 3. Linear forms Ax and Bx with x ~ N(u,X) are independent
iff
ALBT =0.

In particular, if A, B are symmetric and ¥ = o1, they are independent iff
AB = 0.
Proof. The joint CF is
p(u,v) := Eexp{iu’ Ax + iv' Bx} = Fexp{i(ATu + B"v)"x}.

This is the CF of x at argument t = ATu + BTv, so

6(u,v) = expli(u A+ v B — S(ATu+ BYV)TS(ATu + BTv))

1
= expiz(u” A+v p—=lu u+u vV+v u+v \4ig
(u" A+v'B 5 TAx AT TAx BT B AT By BT



This factorises into a product of a function of u and a function of v iff the
two cross-terms in u and v vanish, that is, iff AXBT = 0 and BXAT = 0; by
symmetry of 3, the two are equivalent.

4. Quadratic forms in normal variates

We give a brief treatment of this important material; for full detail see
e.g. [BF], 3.4 — 3.6. Recall (IV.3, D5)

(i) with = ~ N(u,X), linear forms Az, BX are independent iff AXBT = 0;
(ii) for a projection, P? = P (P is idempotent); for a symmetric projection,
PP =P.

We restrict attention, for simplicity, to = 0, ¥ = 021, x ~ N(0,0%I).

It turns out that the distribution theory relevant to regression depends on
quadratic forms in normal variates, x7 Ax for a normally distributed random
vector x, and that we can confine attention to projection matrices. For P a
symmetric projection,

v’ Px = 2" PT Pz = (P2)" (Px),

which reduces from quadratic forms to linear forms — which are much eas-
ier! So: if x Pz, xPx are quadratic forms in normal vectors x, with P;, P,
projections, 7 Piz and z” Pyx are independent iff

P1P2:OI

Py, P, are orthogonal projections. Recall that projections Py, P, are orthog-
onal if their ranges are orthogonal subspaces, i.e.

(Piz).(Pyx) =0 Vao: 2'P'Px=0 Vo, PIP,=0 Va; PP,=0

for P; symmetric. Note that for P a projection, I — P is a projection orthog-
onal to it:

(I-P)? = [-2P+P? = 1-2P+P = [-P; P(I-P)=P-P?>=P—P=0.

If X is an eigenvalue of A, \? is an eigenvalue of A% (check). So if a pro-
jection P has eigenvalue A\, A2 = \: A = 0 or 1. Also, the trace is the sum of
the eigenvalues; for a projection, this is the number of non-zero eigenvalues;
this is the rank. So:



For a projection, the eigenvalues are 0 or 1, and the trace is the rank.

By Spectral Decomposition (II1I.1 D4), a symmetric projection matrix P can
be diagonalised by an orthogonal transformation O to a diagonal matrix D:

OTPO = D, P =0DOT;

as above, the diagonal entries d;; are 0 or 1, and we may re-order so that the
1s come first. So with y := OTx,

2" Pr = 27ODO s = y" Dy =y} + ...+ ¢>.

Normality is preserved under orthogonal transformations (check!), so also
y ~ N(0,02I). Soyi+...+y? is 02 times the sum of r independent squares of
standard normal variates, and this sum is x?(r) (by definition of chi-square):

T Px ~ o\ (r).

If P has rank r, I — P has rank n — r (where n is the sample size — the
dimension of the vector space we are working in):

oI — P)x ~ o*x*(n — 1),

and the two quadratic forms are independent.

It turns out that all this can be generalised, to the sum of several pro-
jections, not just two. This result — the key to all the distribution theory in
Regression — is Cochran’s theorem (William G. COCHRAN (1909-1980) in
1934); [BF| Th. 3.27):

Theorem (Cochran’s Theorem). If
I=P+...+F

with each P; a symmetric projection with rank n;, then

(i) the ranks sum: n =ny + ... + ng;

(ii) each quadratic form Q; := 2T Pz ~ o2x?(n;);

(iii) @1, ..., @k are mutually independent;

(iv) P, ..., Py are mutually orthogonal: P,P; = 0 for i # j.

The quadratic forms that we encounter in Statistics are called sums of squares

(SS) — for regression (SSR), for error (SSE), for the hypothesis (SSH), etc.
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Recall the definition of the Fisher F-distribution with degrees of freedom
(df) m and n (note the order): F'(m,n) is the distribution of the ratio

U/m
F=——
V/in’

where U, V are independent chi-square random variables with df m, n (see
e.g. [BF] 2.3 for the explicit formula for the density, but we shall not need
this).

Recall also (or, if you have not met these, take a look at a textbook):
(i) Analysis of variance (ANOVA) (see e.g. [BF] Ch. 2). Here one tests for
differences between the means of different (normal) populations by analysing
variances. Specifically, one looks at within-groups variability and between-
groups variability, and rejects the null hypothesis of no difference between
the group means if the second is too big compared to the first. As above,
one forms the relevant F-statistic, and rejects if F' is too big. Here one has
qualitative factors (which group?).
(ii) Analysis of Covariance (ANCOVA) (see e.g. [BF] Ch. 5. Similarly for
ANCOVA, where one has both qualitative factors (as with ANOVA) and
quantitative ones (covariates), as with Regression.
(iii) Tests of linear hypotheses in Regression (see e.g. [BF] Ch. 6). Here we
reject if SSH is too big compared to SSE.

5. Estimation theory for the multivariate normal.

Given a sample z1,...,z, from the multivariate normal N,(u,), form
the sample mean (vector) and the sample covariance matriz as in the one-
dimensional case:

- %Z;:x .= %Z(x CF) (@i — 7).

The likelihood for a sample of size 1 is
1
L(z|p, ) = (2m) P2 [x[ 712 exp{—5(z —p)" 2" (z — )},

so the likelihood for a sample of size n is

n

L= (2m) (5 expl g 3 — )5 i~ o).

1



Writing
ri—p= (2 =) = (u— 1),

n n

S (@ ) S - ) = 3 (s~ )T @ 2) +n(@ - p)'S @ - p)

1 1

(the cross-terms cancel as Y (z; — Z) = 0). The summand in the first term
on the right is a scalar, so is its own trace. Since trace(AB) = trace(BA)
and trace(A + B) = trace(B + A),

n

trace(» (z; — 2)"S 7 (2; — 7)) = trace(S Y (z; — )" (2; — T))

1
= trace(X'.nS) = n trace(19).
Combining,
1
L = (2m) 7P|y /2 exp{—én trace(X71S) — —n(z — )Y Nz — )}
Write
Vi=x!

(‘V for variance’); then
1
{ = const — " trace(VS) — (z — )"V (z — p).

So by the Fisher-Neyman Theorem, (z, S) is sufficient for (u, X). It is in fact
minimal sufficient (Problems 2 Q2).
These natural estimators are in fact the MLEs:

Theorem. For the multivariate normal N,(u, ¥), Z and S are the maximum
likelihood estimators for pu, X.

Proof. Write V' = (v;;) := 71, By above, the likelihood is

1 1
L = const.|V|"/? exp{—én trace(VS) — én( wWIV(z - p)l,

so the log-likelihood is

1 1 1
{=c+ nlog V|- gn trace(VS) — §n( W'V (z = p).



