
STATISTICAL METHODS FOR FINANCE: EXAMINATION
SOLUTIONS, 2014.

Q1. With ℓ(θ) the log-likelihood, the score function is

s := ℓ′; [2]

the information per reading is

I(θ) := E[{ℓ′(θ)}2] = −E[ℓ′′(θ)] : I(θ) = E[s2(θ)] = E[−s′(θ)]. [2]

In the example given, write v := σ2.

ℓ(v) = log f = const− 1

2
log v − 1

2
(X − µ)2/v,

s(v) := ℓ′(v) = − 1

2v
+

(X − µ)2

2v2
,

s′(v) =
1

2v2
− (X − µ)2

v4
.

The information per reading is

I = I(v) = E[−s′(v)] = − 1

2v2
+

E[(X − µ)2]

v3
= − 1

2v2
+

v

v3
=

1

2v2
. [8]

The CR bound is
1/(nI) = 2v2/n. [2]

Write

S2
0 :=

1

n

n∑
1

(Xi − µ)2. [2]

Then
nS2

0/σ
2 ∼ χ2(n)

(definition of χ2(n)), so has mean n and variance 2n – because χ2(1) has
mean 1 (‘normal variance’) and variance 2 (by an MGF calculation or from
memory). So S2

0 has mean σ2 (so is unbiased for σ2), and variance 2n.σ4/n2 =
2v2/n, the CR bound above, so is efficient for v = σ2. [4]
Seen – lectures (bookwork) and problems (example).
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Q2. (i) Markowitz’ work of 1952 (which led on to CAPM in the 1960s) gave
two key insights:
(a). Think of risk and return together, not separately. Now return corre-
sponds to mean (= mean rate of return), risk corresponds to variance –
hence mean-variance analysis, efficient frontier, etc. – maximise return for a
given level of risk/minimise risk for a given return rate). [2]
(b). Diversify (don’t ‘put all your eggs in one basket’). Hold a balanced port-
folio – a range of risky assets, with lots of negative correlation – so that when
things change, losses on some assets will be offset by gains on others. [2]
Hence the vector-matrix parameter (µ,Σ) is accepted as an essential part of
any model in mathematical finance.
(ii) Elliptical distributions.

The normal density in higher dimensions is a multiple of exp{−1
2
(x −

µ)TΣ−1(x−µ)}, where the matrices Σ, Σ−1 are positive definite (PD), so the
contours (x− µ)TΣ−1(x− µ) = const. are ellipsoids. The general elliptically
contoured distribution has a density

f(x) = const.g(x− µ)TΣ−1(x− µ)).

This is a semi-parametric model, where θ := (µ, σ) is the parametric part
and the density generator g is the non-parametric part. [4]

(iii) Normal (Gaussian) model: elliptically contoured (g(.) = e−
1
2
.). Though

very useful, it has various deficiencies, e.g.:
(a) It is symmetric. Many financial data sets show asymmetry, or skew. This
reflects the asymmetry between profit and loss. Big profits are nice; big losses
can be lethal (to the firm – bankruptcy). [3]
(b) It has extremely thin tails. Most financial data sets have tails that are
much fatter than the ultra-thin normal tails. [3]
(iv) For asset returns (= profit/loss over initial asset price) over a period,
the return period: matters vary dramatically with the return period.
(a) For long return periods (monthly, say – the Rule of Thumb is that 16
trading days suffice), the CLT applies, and asset returns are approximately
normal (‘aggregational Gaussianity). [2]
(ib) For intermediate return periods (daily, say), a commonly used model is
the generalised hyperbolic (GH) – log-density a hyperbola, with linear asymp-
totes, so density decays like the exponential of a linear function). [2]
(c) For high-frequency returns (‘tick data’, say – every few seconds), the den-
sity typically decays like a power (as with the Student t distribution). [2]
Seen – lectures.
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Q3. For the multivariate normal Np(µ,Σ), x̄ and S are the maximum likeli-
hood estimators for µ, Σ.

Proof. Write V = (vij) := Σ−1. The likelihood is given as

L = const.|V |n/2 exp{−1

2
n trace(V S)− 1

2
n(x̄− µ)TV (x̄− µ)},

so the log-likelihood is

ℓ = c+
1

2
n log |V | − 1

2
n trace(V S)− 1

2
n(x̄− µ)TV (x̄− µ). [2]

The MLE µ̂ for µ is x̄, as this reduces the last term (the only one involving
µ) to its minimum value, 0. [3]

For a square matrix A = (aij), its determinant is

|A| =
∑
j

aijAij ∀i, or |A| =
∑
i

aijAij ∀j, [2]

expanding by the ith row or jth column, where Aij is the cofactor (signed
minor) of aij. From either,

∂|A|/∂aij = Aij, so ∂ log |A|/∂aij = Aij/|A| = (A−1)ji,

the (j, i) element of A−1, recalling the formula for the matrix inverse (or
(A−1)ij if A is symmetric). [2]

Also, if B is symmetric,

trace(AB) =
∑
i

∑
j

aijbji =
∑
i,j

aijbij : ∂ trace(AB)/∂aij = bij. [2]

Using these, and writing S = (sij),

∂ log |V |/∂vij = (V −1)ij = (Σ)ij = σij (V := Σ−1), [2]

∂ trace(V S)/∂vij = sij. [2]

So

∂ℓ/∂vij =
1

2
n(σij − sij), [2]

which is 0 for all i and j iff Σ = S. This says that S is the MLE for Σ:
Σ̂ = S, as required. // [3]
Seen – lectures.
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Q4. From the model equation

yi =
∑p

j=1
aijβj + ϵi, ϵi iid N(0, σ2),

the likelihood and log-likelihood are

L =
1

σn2π
1
2
n
.
∏n

i=1
exp{−1

2
(yi −

∑p

j=1
aijβj)

2/σ2}

=
1

σn2π
1
2
n
. exp{−1

2

∑n

i=1
(yi −

∑p

j=1
aijβj)

2/σ2},

ℓ := logL = const− n log σ − 1

2
[
∑n

i=1
(yi −

∑p

j=1
aijβj)

2]/σ2. (∗) [5]

Maximise w.r.t. βr in (∗) (Fisher, MLE) – equivalently, minimise [...]: ∂ℓ/∂βr =
0 (Least Squares):∑n

i=1
air(yi −

∑p

j=1
aijβj) = 0 (r = 1, . . . , p) :∑p

j=1
(
∑n

i=1
airaij)βj =

∑n

i=1
airyi.

Write C = (cij) for the p× p matrix C := ATA, which we note is symmetric:
CT = C. Then

cij =
∑n

k=1
(AT )ikAkj =

∑n

k=1
akiakj. [5]

So this says ∑p

j=1
crjβj =

∑n

i=1
airyi =

∑n

i=1
(AT )riyi.

In matrix notation, this is

(Cβ)r = (ATy)r (r = 1, . . . , p) : Cβ = ATy, C := ATA.
(NE) [4]

These are the normal equations. As A (n × p, with p << n) has full rank,
A has rank p, so C := ATA has rank p, so is non-singular. So the normal
equations have solution

β̂ = C−1ATy = (ATA)−1ATy. [3]

Multiplying both sides by A, with P the projection matrix P := AC−1AT =
A(ATA)−1AT ,

Py = A(ATA)−1ATy = Aβ̂. [3]

Seen – lectures.
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Q5. ARMA(1,1): Xt = ϕXt−1 + ϵt + θϵt−1: (1− ϕB)Xt = (1 + θB)ϵt.
Condition for Stationarity: |ϕ| < 1 (assumed). [2]
Condition for Invertibility: |θ| < 1 (assumed). [2]

Xt = (1− ϕB)−1(1 + θB)ϵt = (1 + θB)(
∑∞

0
ϕiBi)ϵt

= ϵt +
∑∞

1
ϕiBiϵt + θ

∑∞

0
ϕiBi+1ϵt = ϵt + (θ + ϕ)

∑∞

1
ϕi−1Biϵt :

Xt = ϵt + (ϕ+ θ)
∑∞

i=1
ϕi−1ϵt−i. [4]

Variance: lag τ = 0. Square and take expectations: ϵs iid N(0, σ2), so

γ0 = varXt = E[X2
t ] = σ2 + (ϕ+ θ)2

∑∞

1
ϕ2(i−1)σ2

= σ2 +
(ϕ+ θ)2σ2

(1− ϕ2)
= σ2(1− ϕ2 + ϕ2 + 2ϕθ + θ2)/(1− ϕ2) :

γ0 = σ2(1 + 2ϕθ + θ2)/(1− ϕ2). [5]

Covariance: lag τ ≥ 1. Xt−τ = ϵt−τ + (ϕ+ θ)
∑∞

j=1ϕ
j−1ϵt−τ−j.

Multiply the series for Xt and Xt−τ and take expectations:

γτ = cov(Xt, Xt−τ ) = E[XtXt−τ ],

= E{[ϵt + (ϕ+ θ)
∑∞

i=1
ϕi−1ϵt−i].[ϵt−τ + (ϕ+ θ)

∑∞

j=1
ϕj−1ϵt−τ−j]}.

The ϵt-term in the first [.] gives no contribution. The i-term in the first [.]
for i = τ and the ϵt−τ in the second [.] give (ϕ + θ)ϕτ−1σ2. The product
of the i term in the first sum and the j term in the second contributes for
i = τ + j; for j ≥ 1 it gives (ϕ+ θ)2ϕτ+j−1.ϕj−1.σ2. So

γτ = (ϕ+ θ)ϕτ−1σ2 + (ϕ+ θ)2ϕτσ2
∑∞

j=1
ϕ2(j−1).

The geometric series is 1/(1− ϕ2) as before, so for τ ≥ 1

γτ =
(ϕ+ θ)ϕτ−1σ2

(1− ϕ2)
.[1−ϕ2+ϕ(ϕ+θ)] : γτ = σ2(ϕ+θ)(1+ϕθ)ϕτ−1/(1−ϕ2).

[5]
Autocorrelation. The autocorrelation ρτ := γτ/γ0 is thus

ρ0 = 1, ρτ =
(ϕ+ θ)(1 + ϕθ)

(1 + 2ϕθ + θ2)
.ϕτ−1 (τ ≥ 1). [2]
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Q6. The multivariate normal distribution Nn(µ,Σ) in n dimensions with
mean vector µ and covariance matrix Σ has characteristic function ϕ(t) =
exp{−µT t− 1

2
tTΣt}, and by Edgeworth’s theorem, when Σ is positive definite

(invertible), has density

f(x) :=
1

(2π)
1
2
n|Σ| 12

exp{−1

2
(x− µ)TΣ−1(x− µ)}. [3]

If
y|u ∼ N(Xβ + Zu,R), u ∼ N(0, D),

f(y, u) = f(y|u)f(u) = const. exp{−1

2
(y−Xβ−Zu)TR−1(y−Xβ−Zu)}. exp{−1

2
uTD−1u}.

This is multinormal (has the functional form in u of Edgeworth’s theorem).
So u|y is also multinormal (conditioning a multinormal on a subvector gives
a multinormal):

f(u|y) ∼ N(Σ, ν), [3]

say. As
f(u|y) = f(y, u)/f(y)

by Bayes’ theorem, we can identify which multinormal u|y is by picking
out the quadratic term in u and the linear term in u (in f(y, u): f(y) =∫
f(y|u)du does not involve u) and using Edgeworth’s theorem. [2]
The quadratic term in u is

−1

2
[uTZTR−1Zu+ uTD−1u],= −1

2
uTΣ−1u, Σ := (ZTR−1Z +D−1)−1.

[3]
The linear term in u is

−uTZTR−1(y −Xβ),= −uTΣ−1ν,

ν := ΣZTR−1(y −Xβ) = (ZTR−1Z +D−1)−1ZTR−1(y −Xβ) : [3]

u|y ∼ N(Σ, ν), Σ = (ZTR−1Z+D−1)−1, ν = (ZTR−1Z+D−1)−1ZTR−1(y−Xβ).
[3]

Application: 1. Financial. Here y is the response variable (output, profit,
market share etc.); Xβ represents the fixed effects (macro-economic variables
– interest rates, trade figures etc.); Zu represents the random effects (firm-
specific aspects – firms differ). [3]
2. Educational. Response: performance; fixed effects: teaching methods,
etc.; random effects: the pupils – pupils differ.
Seen – lectures.
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