SMF EXAMINATION SOLUTIONS 2014-15

Q1. (i) (a) The log-likelihood is

$$\ell = -n\log 2 - \sum |x_i - \theta|$$

To maximise this – i.e. minimise $\sum |x_i - \theta|$ – draw a graph. From this, the sum is minimised by $\theta = Med$, and increases linearly (slope +1 to the right, -1 to the left) on either side. So the MLE is $\hat{\mu} = Med$. [3] (b) With one reading, as above, ℓ decreases with slope -1 to the right of Med, slope +1 to the left of Med. So $(\ell')^2 = 1$ (except at $\lambda = Med$, where the derivative is not defined – but we are going to integrate, and so can neglect null sets, e.g single points). So $I = \int (\partial \log f / \partial \theta)^2 f = \int f = 1$, as f is a density. So the CR bound is 1/n. [3]

(c) We are given that Med is asymptotically normal, and that its mean is $med = \theta$, so Med is asymptotically unbiased. By symmetry, the population median is $med = \theta$, where the density is $\frac{1}{2}$. So $4f(med)^2 = 1$, and the asymptotic variance of the sample median is 1/n, the CR bound, so Med is also asymptotically efficient. [4]

$$(ii)$$
 (a)

$$f(x;\mu) = \frac{1}{\pi(1+(x-\mu)^2)}, \qquad \ell = \log f = c - \log[1+(x-\mu)^2],$$
$$\ell' = \frac{2(x-\mu)}{1+(x-\mu)^2}, \qquad \ell'(\mathbf{x};\theta) = 2\sum_{1}^{n} \frac{(x_i-\mu)}{1+(x_i-\mu)^2}.$$

But we have efficiency iff ℓ' factorises in the form $\ell'(\mathbf{x}; \theta) = A(\theta)(u(\mathbf{x}) - \theta)$. The likelihood here does not factorise, so there is no efficient estimator. [4] (b) The information per reading is

$$E[(\ell')^2] = \int (\partial f/\partial \mu)^2 f = \frac{4}{\pi} \int \frac{(x-\mu)^2}{[1+(x-\mu)^2]^3} dx = \frac{4}{\pi} \int \frac{x^2}{[1+x^2]^3} dx = \frac{4}{\pi} I,$$

say. Given $I = \pi/8$ (to evaluate I by Complex Analysis: use $f(z) := z^2/[1 + z^2]^3$, the contour Γ a large semicircle in the upper half-plane; f has a triple pole inside Γ of residue -i/16, so $I = 2\pi i \ Res = \pi/8$), so the information per reading is $\frac{1}{2}$. So the information in a sample of size n is n/2, and the MLE has asymptotic variance 2/n. As in (i), $med = \mu$, $f(med) = 1/\pi$, so the sample median Med has asymptotic variance $1/(4nf(med)^2) = \pi^2/4n$. So the asymptotic efficiency is their ratio, $8/\pi^2 \sim 81\%$. [6] [Seen – Problems]

Q2. $y_A = a + \epsilon_1$, $y_B = b + \epsilon_2$, $y_{B-A} = -a + b + \epsilon_3$. So the regression model is $y = A\beta + \epsilon$, where y is the 3-vector of readings, ϵ is the 3-vector of errors, $\beta := (a, b)^T$ is the 2-vector of parameters and A is the design matrix. (a)

$$A = \begin{pmatrix} 1 & 0\\ 0 & 1\\ -1 & 1 \end{pmatrix}.$$
 [3]

(b)

$$C := A^{T}A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}; \quad |C| = 3;$$
$$C^{-1} = \frac{1}{3} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, C^{-1}A^{T} = \frac{1}{3} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{pmatrix}.$$
(c)

$$P = \frac{1}{3} \begin{pmatrix} 1 & 0\\ 0 & 1\\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & -1\\ 1 & 2 & 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & 1 & -1\\ 1 & 2 & 1\\ -1 & 1 & 2 \end{pmatrix}, \quad I - P = \frac{1}{3} \begin{pmatrix} 1 & -1 & 1\\ -1 & 1 & -1\\ 1 & -1 & 1 \end{pmatrix}.$$

$$[4]$$

(d) The parameter estimates are

$$C^{-1}A^{T}y = \frac{1}{3} \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} y_{A} \\ y_{B} \\ y_{B-A} \end{pmatrix} = \begin{pmatrix} \hat{a} \\ \hat{b} \end{pmatrix} :$$
$$\hat{a} = (2y_{A} + y_{B} - y_{B-A})/3, \quad \hat{b} = (y_{A} + 2y_{B} + y_{B-A})/3.$$
[3]

(e) The fitted values are
$$\hat{y} = Py$$
, which can be written in two ways:

$$\begin{pmatrix} (2y_A + y_B - y_{B-A})/3\\ (y_A + 2y_B + y_{B-A})/3\\ (-y_A + y_B + 2y_{B-A})/3) \end{pmatrix} = \begin{pmatrix} \hat{a}\\ \hat{b}\\ \hat{b} - \hat{a} \end{pmatrix}.$$
 [3]

(f) As n = 3, p = 2 here, the ranks of P, I - P are 2 and 1. [2] (g) Write SSE, the sum of squares for error, for $y^T(I - P)y$. As n - p = 1, $\hat{\sigma}^2 = SSE/(n - p) = y^T(I - P)y$, which can be calculated by above. With numerical data, SSE is the sum of squared residuals, $\sum (y_i - \hat{y}_i)^2$. [2] [Unseen; similar seen in lectures and problems]

Q3. $x_2|x_1 \sim N(\mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(x_1 - \mu_1), \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}).$ If $x_1, x_2, x_3 \sim N(\mu, \Sigma)$ are independent, $y_1 := x_1 + x_2, y_2 := x_2 + x_3$, then y = Ax, where

$$y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

So the mean is

$$Ey = A.Ex = A\mu = \begin{pmatrix} \mu_1 + \mu_2 \\ \mu_2 + \mu_3 \end{pmatrix} = m,$$
 [3]

say. The variance is

$$var(y) = A\Sigma A^{T} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & \rho & \rho \\ \rho & 1 & \rho \\ \rho & \rho & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1+\rho & 2\rho \\ 1+\rho & 1+\rho \\ 2\rho & 1+\rho \end{pmatrix} = \begin{pmatrix} 2+2\rho & 1+3\rho \\ 1+3\rho & 2+2\rho \end{pmatrix}.$$
 [5]

 So

$$y \sim N(m, \Sigma_y), \qquad m = \begin{pmatrix} \mu_1 + \mu_2 \\ \mu_2 + \mu_3 \end{pmatrix}, \qquad \Sigma_y = \begin{pmatrix} 2+2\rho & 1+3\rho \\ 1+3\rho & 2+2\rho \end{pmatrix}.$$
 [4]

(ii) So on conditioning, the four partitioned submatrices are the four components; the conditional mean and conditional variance of $y_1|y_2$ are

$$m_1 + \frac{1+3\rho}{2(1+\rho)}(y_2 - m_2) = \mu_1 + \mu_2 + \frac{1+3\rho}{2(1+\rho)}(y_2 - \mu_2 - \mu_3), \quad 2(1+\rho) - \frac{(1+3\rho)^2}{2(1+\rho)}.$$
[4]

So

$$y_1|y_2 \sim N(\mu_1 + \mu_2 + \frac{1+3\rho}{2(1+\rho)}(y_2 - \mu_2 - \mu_3), 2(1+\rho) - \frac{(1+3\rho)^2}{2(1+\rho)}).$$
 [4]

[Unseen; similar seen – lectures and problems]

Q4. ARMA(1,1). $X_t = \phi X_{t-1} + \epsilon_t + \theta \epsilon_{t-1}$: $(1 - \phi B)X_t = (1 + \theta B)\epsilon_t$. (i) Condition for stationarity and invertibility: $|\phi| < 1$; $|\theta| < 1$. [2, 2] (ii) Assuming these:

$$X_t = (1 - \phi B)^{-1} (1 + \theta B) \epsilon_t = (1 + \theta B) (\sum_0^\infty \phi^i B^i) \epsilon_t$$
$$= \epsilon_t + \sum_1^\infty \phi^i B^i \epsilon_t + \theta \sum_0^\infty \phi^i B^{i+1} \epsilon_t = \epsilon_t + (\theta + \phi) \sum_1^\infty \phi^{i-1} B^i \epsilon_t :$$
$$X_t = \epsilon_t + (\phi + \theta) \sum_{i=1}^\infty \phi^{i-1} \epsilon_{t-i}.$$

(a) Variance: lag $\tau = 0$. The ϵ s are uncorrelated with variance σ^2 , so

$$\gamma_0 = var X_t = E[X_t^2] = \sigma^2 + (\phi + \theta)^2 \sum_{1}^{\infty} \phi^{2(i-1)} \sigma^2$$
$$= \sigma^2 + \frac{(\phi + \theta)^2 \sigma^2}{(1 - \phi^2)} = \sigma^2 (1 - \phi^2 + \phi^2 + 2\phi\theta + \theta^2) / (1 - \phi^2) :$$
$$\gamma_0 = \sigma^2 (1 + (\phi + \theta)^2 / (1 - \phi^2)) = \sigma^2 (1 + 2\phi\theta + \theta^2) / (1 - \phi^2)$$
[8]

(b) Covariance: lag $\tau \geq 1$.

$$X_{t-\tau} = \epsilon_{t-\tau} + (\phi + \theta) \sum_{j=1}^{\infty} \phi^{j-1} \epsilon_{t-\tau-j}.$$

Multiply the series for X_t and $X_{t-\tau}$ and take expectations:

$$\gamma_{\tau} = cov(X_t, X_{t-\tau}) = E[X_t X_{t-\tau}],$$
$$= E[[\epsilon_t + (\phi + \theta) \sum_{i=1}^{\infty} \phi^{i-1} \epsilon_{t-i}] \cdot [\epsilon_{t-\tau} + (\phi + \theta) \sum_{j=1}^{\infty} \phi^{j-1} \epsilon_{t-\tau-j}]].$$

The ϵ_t -term in the first [.] gives no contribution. The *i*-term in the first [.] for $i = \tau$ and the $\epsilon_{t-\tau}$ in the second [.] give $(\phi + \theta)\phi^{\tau-1}\sigma^2$. The product of the *i* term in the first sum and the *j* term in the second contributes for $i = \tau + j$; for $j \ge 1$ it gives $(\phi + \theta)^2 \phi^{\tau+j-1} . \phi^{j-1} . \sigma^2$. So

$$\gamma_{\tau} = (\phi + \theta)\phi^{\tau - 1}\sigma^2 + (\phi + \theta)^2\phi^{\tau}\sigma^2 \sum_{j=1}^{\infty} \phi^{2(j-1)}.$$

The geometric series is $1/(1-\phi^2)$ as before, so

$$\gamma_{\tau} = \sigma^2(\phi + \theta)\phi^{\tau - 1} + \sigma^2\phi^{\tau}(\phi + \theta)^2/(1 - \phi^2) \qquad (\tau \ge 1).$$

This decreases geometrically beyond the first term $\gamma_0 = 1$, and this behaviour is indicative of ARMA(1,1). [8] [Seen – loctures and problems]

[Seen – lectures and problems]

Q5. (i) Markowitz' work of 1952 (which led on to CAPM in the 1960s) gave two key insights:

(a). Think of risk and return together, not separately. Now return corresponds to mean (= mean rate of return), risk corresponds to variance – hence mean-variance analysis, efficient frontier, etc. – maximise return for a given level of risk/minimise risk for a given return rate). [2] (b). Diversify (don't 'put all your eggs in one basket'). Hold a balanced portfolio – a range of risky assets, with lots of negative correlation – so that when things change, losses on some assets will be offset by gains on others. [2] Hence the vector-matrix parameter (μ, Σ) is accepted as an essential part of any model in mathematical finance.

(ii) Elliptical distributions.

The normal density in higher dimensions is a multiple of $\exp\{-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\}$, where the matrices Σ , Σ^{-1} are *positive definite* (PD), so the contours $(x - \mu)^T \Sigma^{-1}(x - \mu) = \text{const.}$ are *ellipsoids*. The general *elliptically contoured* distribution has a density

$$f(x) = const.g((x - \mu)^T \Sigma^{-1} (x - \mu)).$$

This is a *semi-parametric* model, where $\theta := (\mu, \sigma)$ is the parametric part and the *density generator* g is the non-parametric part. [4] (iii) *Normal (Gaussian) model*: elliptically contoured $(g(.) = e^{-\frac{1}{2}})$. Though very useful, it has various deficiencies, e.g.:

(a) It is *symmetric*. Many financial data sets show asymmetry, or *skew*. This reflects the asymmetry between profit and loss. Big profits are nice; big losses can be lethal (to the firm – bankruptcy). [3]

(b) It has extremely thin tails. Most financial data sets have tails that are *much fatter* than the ultra-thin normal tails. [3]

(iv) For asset returns (= profit/loss over initial asset price) over a period, the *return period*: matters vary dramatically with the return period.

(a) For *long* return periods (monthly, say – the Rule of Thumb is that 16 trading days suffice), the CLT applies, and asset returns are approximately *normal* ('aggregational Gaussianity). [2]

(ib) For *intermediate* return periods (daily, say), a commonly used model is the *generalised hyperbolic* (GH) – log-density a hyperbola, with linear asymptotes, so density decays like the exponential of a linear function). [2] (c) For *high-frequency* returns ('tick data', say – every few seconds), the density typically decays like a power (as with the Student t distribution). [2] [Seen – lectures.] Q6. (i) Edgeworth's theorem says that if $x \sim N(\mu, \Sigma)$ and $K := \Sigma^{-1}$,

$$f(x) \propto \exp\{-\frac{1}{2}(x-\mu)^T K(x-\mu)\}.$$
 [1]

$$f(x_1, x_2) \propto \exp\{-\frac{1}{2}(x_1^T - \mu_1^T, x_2^T - \mu_2^T) \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{pmatrix}\},$$

giving (as a scalar is its own transpose, so the two cross-terms are the same) $\exp\{-\frac{1}{2}[(x_1^T - \mu_1^T)K_{11}(x_1 - \mu_1) + 2(x_1^T - \mu_1^T)K_{12}(x_2 - \mu_2) + (x_2^T - \mu_2^T)K_{22}(x_2 - \mu_2)]\}.$ So

$$f_{1|2}(x_1|x_2) = f(x_1, x_2) / f_2(x_2)$$

$$\propto \exp\{-\frac{1}{2}[(x_1^T - \mu_1^T)K_{11}(x_1 - \mu_1) + 2(x_1^T - \mu_1^T)K_{12}(x_2 - \mu_2)]\}, \quad (*)$$

treating x_2 here as a constant and x_1 as the argument of $f_{1|2}$. [4] By Edgeworth's theorem again, if the conditional mean of $x_1|x_2$ is ν_1 ,

$$f_{1|2}(x_1|x_2) \propto \exp\{-\frac{1}{2}(x_1^T - \nu_1^T)V_{11}(x_1 - \nu_1)\},$$
 (**)

for some matrix V_{11} . So $x_1|x_2$ is multinormal (as may be quoted). [3]

Equating coefficients of the quadratic term gives the conditional concentration matrix of $x_1|x_2$ as $V_{11} = K_{11}$:

$$conc(x_1|x_2) = K_{11}.$$
 [3]

NHB

So the conditional covariance matrix is K_{11}^{-1} . Then equating linear terms in (*) and (**) gives the conditional mean:

$$x_1^T K_{11} \nu_1 = x_1^T K_{11} \mu_1 - x_1^T K_{12} (x_2 - \mu_2) : \quad \nu_1 := E[x_1 | x_2] = \mu_1 - K_{11}^{-1} K_{12} (x - \mu_2)$$
[3]

So

$$x_1 | x_2 \sim N(\mu_1 - K_{11}^{-1} K_{12}(x - \mu_2), K_{11}^{-1}).$$
 [2]

Using the quoted result for the inverse of a partitioned matrix gives

$$M = K_{11}, \qquad M^{-1} = K_{11}^{-1} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21},$$

$$K_{11}^{-1} K_{12} = M^{-1} (-MBD^{-1}) = -BD^{-1} = -\Sigma_{12} \Sigma_{22}^{-1}.$$

Combining,

$$x_1 | x_2 \sim N(\mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x - \mu_2), \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}).$$
 [4]

[Seen – Problems]