smfsoln8(14).tex

SMF SOLUTIONS 8. 12.12.2014

Q1. (i) With X the number of successes, and as the prior in p is uniform,

$$P(X = x|p) = \binom{n}{x} p^{x} (1-p)^{n-x}, \qquad P(X = x) = \int_{0}^{1} \binom{n}{x} p^{x} (1-p)^{n-x} dp :$$

$$P(a
$$= \int_{a}^{b} \binom{n}{x} p^{x} (1-p)^{n-x} dp / B(x+1, n-x+1).$$$$

So the posterior is B(x + 1, n - x + 1). (ii) If the prior is now $B(\alpha, \beta)$, as in (i)

$$P(a
$$= \int_{a}^{b} {n \choose x} p^{x+\alpha-1} (1-p)^{n-x+\beta-1} dp.$$$$

So the posterior is $B(x + \alpha, n - x + \beta)$ (observe that U(0, 1) = B(1, 1), so (i) is the case $\alpha = \beta = 1$).

Q2. (i) For the Bernoulli distribution
$$B(p)$$
, $f(x;p) = p^x (1-p)^{1-x}$,
 $\ell = x \log p + (1-x) \log(1-p)$, $\ell' = \frac{x}{p} - \frac{1-x}{1-p}$, $\ell'' = -\frac{x}{p^2} - \frac{1-x}{(1-p)^2}$,
 $I(p) = -E[\ell''] = \frac{(1-p)}{(1-p)^2} + \frac{p}{p^2} = \frac{1}{p} + \frac{1}{1-p} = \frac{1}{p(1-p)}$.

(ii) So the Jeffreys prior is $\pi(p) \propto \sqrt{I(p)} = 1/\sqrt{p(1-p)}$. This is the Beta distribution $B(\frac{1}{2}, \frac{1}{2})$, and $B(\frac{1}{2}, \frac{1}{2}) = \Gamma(\frac{1}{2}) \cdot \Gamma(\frac{1}{2})/\Gamma(1) = \pi$, as $\Gamma(\frac{1}{2}) = \sqrt{\pi}$. So the Jeffreys prior is the *arc-sine law*:

$$\pi(x) = \frac{1}{\pi\sqrt{x(1-x)}} \qquad (x \in [0,1]).$$

Q3. Recall $\Gamma(z+1) = z\Gamma(z)$. $B(\alpha, \beta)$ has mean

$$E[X] = \int_0^1 x \cdot x^{\alpha - 1} (1 - x)^{\beta - 1} dx / B(\alpha, \beta) = \int_0^1 x^\alpha (1 - x)^{\beta - 1} dx / B(\alpha, \beta)$$
$$= B(\alpha + 1, \beta) / B(\alpha, \beta) = \frac{\Gamma(\alpha + 1)\Gamma(\beta)}{\Gamma(\alpha + \beta)} / \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)} = \alpha / (\alpha + \beta),$$

Q4. So the posterior mean in Q1(ii) is $(x + \alpha)/(n + \alpha + \beta)$. As the amount of data increases, $n \to \infty$, and by SLLN $x/n \to p$ a.s., where p is the true parameter value. With no data, x = n = 0, and the mean is the prior mean $\alpha/(\alpha + \beta)$. The value above is a compromise between these two.

Q5.

$$(f_{\alpha} * f_{\beta})(x) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_0^x y^{\alpha-1} e^{-y} (x-y)^{\beta-1} e^{-(x-y)} dy$$
$$= \frac{1}{\Gamma(\alpha)\Gamma(\beta)} e^{-x} \int_0^x y^{\alpha-1} (x-y)^{\beta-1} dy.$$

In the integral, I say, substitute y = xu. Then $I = x^{\alpha+\beta-1} \int_0^1 u^{\alpha-1} (1-u)^{\beta-1} du = x^{\alpha+\beta-1} B(\alpha,\beta)$. Combining, the RHS has the form of $f_{\alpha+\beta}(x)$ (to within constants!):

$$(f_{\alpha} * f_{\beta})(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \cdot B(\alpha, \beta) f_{\alpha + \beta}(x).$$

As both sides are densities, both integrate to 1. So the constant on the RHS is 1, which gives Euler's integral for the Beta function.

Note. It is remarkable that this purely probabilistic argument (convolutions of Gamma densities) yields a purely analytic result (Euler's integral for the Beta function).

Q6. (i) The likelihood is $L = \prod_{i=1}^{n} \theta^{-1} I(x_i \in (0, \theta)) = \theta^{-n} I(\theta > \max)$, max := $\max(x_1, \ldots, x_n)$. To maximise this, one minimises θ , subject to the constraint $\theta > \max$. So the MLE is $\hat{\theta} = \max$.

(ii) By Fisher-Neyman, for each $n \max(x_1, \ldots, x_n)$ is a sufficient statistic.

(iii) Posterior is proportional to prior times likelihood, so

$$f(\theta|x_1,\ldots,x_n) \propto \lambda e^{-\lambda\theta} \cdot \theta^{-n} \qquad (\theta > \max(x_1,\ldots,x_n)).$$
 NHB