smfexam.tex

SMF EXAMINATION. 2011

Q1. (i) If $X \sim N_n(\mu, \Sigma)$, A and B are matrices, show that the linear forms AX, BX are independent iff

$$A\Sigma B^T = 0.$$
 [8]

[3]

[5]

(ii) If P is a symmetric projection and $\Sigma = \sigma^2 I$, show that

(a) the linear forms PX and (I - P)X are independent;

(b) the quadratic forms $X^T P X$ and $X^T (I - P) X$ are independent. [7]

(iii) If here P has rank k, find the distributions of these quadratic forms. [7]

Q2. The heights of two towers A and B are measured, and so is the difference of their heights (B is the higher). The true values are α and β ; the readings are y_A, y_B, y_{B-A} . Formulate a regression model. [6] Find

(a) the design matrix A ,	[3]
(b) $C := A^T A, C^{-1} A^T,$	[1,1]
(c) the projection matrix $P := AC^{-1}A^T$ and $I - P$,	[1,1]
(d) the parameter estimates,	[1,1]
(e) the fitted values,	$[1,\!1,\!1]$
(f) the ranks of P and $I - P$.	[1,1]
(g) Describe briefly how to find an unbiased estimator of the e	error variance
σ^2 .	[5]

Q3. (i) Define the *autoregressive model* of order p, AR(p). Explain briefly, without proof, how to find the moving-average representation. [5] (ii) Obtain the Yule-Walker equations, and explain briefly, without proof, how to solve them. [5]

(iii) Find the moving-average representation for the model

$$X_t = X_{t-1} - \frac{1}{4}X_{t-2} + \epsilon_t.$$
 [10]

(iv) Give, without proof, the senses in which your answer converges. [5] Q4. A 3-vector x has the multivariate normal distribution $N(\mu, \Sigma)$, where

$$\Sigma = \left(\begin{array}{ccc} 1 & \rho & \rho \\ \rho & 1 & \rho \\ \rho & \rho & 1 \end{array}\right).$$

A 2-vector y is defined by $y_1 := x_1 + x_2, y_2 := x_2 + x_3.$ (i) Find the distribution of y. [10] (ii) Find the conditional distribution of y_1 given $y_2.$ [15] (You may quote without proof the formula $x_2|x_1 \sim N(\mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(x_1 - \mu_1), \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}).)$

Q5. Describe briefly, without proofs, the method of principal components analysis. [6]

Discuss the advantages and disadvantages of working with covariances and with correlations. [6]

Give examples, in the financial area, where each might be appropriate. [13]

N. H. Bingham