STATISTICAL METHODS FOR FINANCE: EXAMINATION 2016-17

Three hours; six questions, do five.

Q1. In a parametric model, define the score function and the information per reading.

In a normal model with mean μ known,

(i) find the information per reading on the variance $v := \sigma^2$, and hence the Cramér-Rao bound;

(ii) find an efficient estimator for σ^2 .

Q2. Define the lognormal distribution $LN(\mu, \Sigma)$ with parameters μ and σ . Show that it has mean $\exp\{\mu + \frac{1}{2}\sigma^2\}$.

Describe briefly how the lognormal distribution occurs in mathematical finance.

For a normal distribution $N(\mu, \sigma^2)$ with σ known, obtain a uniformly most powerful test for the simple null hypothesis $H_0: \mu = \mu_0$ against the composite alternative hypothesis $H_1: \mu < \mu_0$.

Q3. (i) Describe briefly the main contributions of Markowitz's work to mathematical finance.

(ii) Describe briefly the elliptically contoured model, and specify its parametric part and its non-parametric part.

(iii) What are the principal deficiencies of normal (Gaussian) models in mathematical finance?

(iv) How does the asset return distribution depend on the return period?

Q4. In a multivariate setting, define the sample mean vector \bar{x} and the sample covariance matrix $S = S_x$.

For the multivariate normal model $N(\mu, \Sigma)$,

(i) express the likelihood in terms of \bar{x} and S;

(ii) show that (\bar{x}, S) is sufficient for (μ, Σ) .

Q5. In an ARMA(1,1) model

$$X_t = \phi X_{t-1} + \epsilon_t + \theta \epsilon_{t-1},$$

(i) state (without proof) the conditions for stationarity and invertibility.

(ii) Assuming these, find

(a) the variance $\gamma_0 = var X_0$;

(b) the covariance $\gamma_k = cov(X_t, X_{t-k})$.

Q6. We are to estimate the parameter θ of a Poisson distribution, using as prior for θ the Gamma distribution $\Gamma(a, b)$ and a sample of size n.

(i) Find the posterior for θ .

(ii) Find its mean, and interpret the posterior mean as a weighted average of the prior mean and the sample mean.