STATISTICAL METHODS FOR FINANCE: EXAMINATION

SOLUTIONS, 2014.
Q1. With ¢(0) the log-likelihood, the score function is
5=/

the information per reading is

1(0) = E{(0)}*] = —E["(0)] - 1(0) = E[s*(0)] = E[-5'(9)].

In the example given, write v := o2,

1 1
{(v) =log f = const — 5 logv — §(X — 1)*/v,
1 (X —p?
() = 0(0) =~ + DL
1 (X —p)?
YO =gE T
The information per reading is
1 E[(X —u)? 1 v 1
JR— R / JR— JR— JR—

The CR bound is
1/(nl) = 2v*/n.
Write

n

1
o=~ > (X

1

Then
nSy /o ~ x*(n)

(definition of x?(n)), so has mean n and variance 2n — because x?(1) has
mean 1 (‘normal variance’) and variance 2 (by an MGF calculation or from
memory). So S? has mean o2 (so is unbiased for 02), and variance 2n.c* /n? =

202 /n, the CR bound above, so is efficient for v = o2,
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Q2. (i) Markowitz work of 1952 (which led on to CAPM in the 1960s) gave
two key insights:
(a). Think of risk and return together, not separately. Now return corre-
sponds to mean (= mean rate of return), risk corresponds to variance —
hence mean-variance analysis, efficient frontier, etc. — maximise return for a
given level of risk/minimise risk for a given return rate). [2]
(b). Diversify (don’t ‘put all your eggs in one basket’). Hold a balanced port-
folio — a range of risky assets, with lots of negative correlation — so that when
things change, losses on some assets will be offset by gains on others.  [2]
Hence the vector-matrix parameter (i, Y) is accepted as an essential part of
any model in mathematical finance.
(i) Elliptical distributions.

The normal density in higher dimensions is a multiple of exp{—%(x —
w) Y (2 —p)}, where the matrices X, ©7! are positive definite (PD), so the
contours (x — p)T S~ (z — ) = const. are ellipsoids. The general elliptically
contoured distribution has a density

F(2) = const.g(e — ) SN @ — ).

This is a semi-parametric model, where 6 := (u,0) is the parametric part
and the density generator g is the non-parametric part. [4]
(iii) Normal (Gaussian) model: elliptically contoured (g(.) = e~2"). Though
very useful, it has various deficiencies, e.g.:

(a) It is symmetric. Many financial data sets show asymmetry, or skew. This
reflects the asymmetry between profit and loss. Big profits are nice; big losses

can be lethal (to the firm — bankruptcy). [3]
(b) It has extremely thin tails. Most financial data sets have tails that are
much fatter than the ultra-thin normal tails. [3]

(iv) For asset returns (= profit/loss over initial asset price) over a period,
the return period: matters vary dramatically with the return period.

(a) For long return periods (monthly, say — the Rule of Thumb is that 16
trading days suffice), the CLT applies, and asset returns are approximately
normal (‘aggregational Gaussianity). [2]
(ib) For intermediate return periods (daily, say), a commonly used model is
the generalised hyperbolic (GH)—log-density a hyperbola, with linear asymp-
totes, so density decays like the exponential of a linear function). [2]
(c) For high-frequency returns (‘tick data’, say — every few seconds), the den-
sity typically decays like a power (as with the Student ¢ distribution). [2]
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Q3. For the multivariate normal N,(p,Y), Z and S are the maximum likeli-
hood estimators for p, >.

Proof. Write V' = (v;;) := X7, The likelihood is given as

1 1
L = const.|V|"/? exp{—én trace(VS) — §n( w)V(zZ — )},
so the log-likelihood is
1 1
(=c+ nlog V] — 3n trace(VS) — En( W)V (z — p). [2]
The MLE /i for p is Z, as this reduces the last term (the only one involving
) to its minimum value, 0. [3]
For a square matrix A = (a;;), its determinant is
|A| = Zaiinj \V/l, or |A| = Zaiinj \V/], [2]
j i

expanding by the ith row or jth column, where A;; is the cofactor (signed
minor) of a;;. From either,

O|A|/Dai; = Ayj, so Olog|Al/da;; = Aij/|A] = (A7),

the (j,7) element of A~!, recalling the formula for the matrix inverse (or
(A71);; if A is symmetric). [2]
Also, if B is symmetric,

trace(AB) Z Zau i = Z ai;bij 0 trace(AB)/0a;; = b;j. (2]
4,J

Using these, and writing S = (s;5),

dlog [V]/0vij = (V)i = (B)y =05 (V=271 2]
0 trace(V S)/0vi; = sij. (2]

So )
0t /0vi; = Snloy; = si7), 2]
which is 0 for all ¢ and j iff ¥ = S. This says that S is the MLE for X
¥ =S, as required. // [3]
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Q4. From the model equation
p .
Y; = Zj:laijﬁj + €, €; ’LZd N(07 0'2),

the likelihood and log-likelihood are

1 n 1 » ) )

L = O_nQﬂ—%n 'Hizl eXp{_E(yl - ijlai]ﬂj) /0’ }
1 — v L,

= —mew{=g> . =D b))%,

¢ :=log L = const —nlogo — %[Z;l(yi — ZjZIQijgj)2]/g2, (x) [5]

Maximise w.r.t. 3, in (*) (Fisher, MLE) — equivalently, minimise [...]: 9¢/05, =
0 (Least Squares):

Zj:la"(yi B ijlaijﬁj) =0 (r=1,...,p):
Z;(Z;wmﬁj = Z:;lairyi.

Write C' = (¢;;) for the p x p matrix C' := AT A, which we note is symmetric:
CT = C. Then

ci=, (ANady =) auwy. [5]

ijlcrjﬂj = ijlairyz‘ = ijl(AT>riyi-

In matrix notation, this is

(CB), = (ATy),  (r=1,..p): CB=ATy, C:i=ATA
(NE) [4]
These are the normal equations. As A (n x p, with p << n) has full rank,
A has rank p, so O := AT A has rank p, so is non-singular. So the normal
equations have solution

B =C71ATy = (ATA) ATy, 3]

Multiplying both sides by A, with P the projection matriz P := AC~1AT =
A(AT A)1 AT,

So this says

Py = A(ATA) ATy = AB. 3]
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Q5 ARMA(.Z,I) Xt = ngt—l —|— €t + gﬁt_li (]_ — ¢B)Xt = (1 + QB)Et.
Condition for Stationarity: |¢| < 1 (assumed). [2]
Condition for Invertibility: [#] < 1 (assumed). [2]

X, = (1= ¢B)(1+0B)e, = (1 +0B)(Y_ " ¢'B')e,
=€+ Z:oqbiBiet + 92;0¢i3i+16t =+ (0+ ¢)Z:o¢i—lBiet :
Xt = € + <¢ + e)zzl(biilet*i' [4]

Variance: lag 7 = 0. Square and take expectations: es iid N(0,0?), so

%0 = varX, = B[X}] = 0* + (6 +0)2)_ “¢* o

— 2 (¢ +0)*0? — 02(1 — &2 2 2 2y .
= Ty (1=¢°+¢"+200+0°) /(1 — ) :
Yo =0 (1+ 200 +6%)/(1 - ¢°). 5]

Covariance: lag 7 > 1. Xir=¢€_++(0+ H)Zjozlqﬁj_let_T_j.
Multiply the series for X; and X, , and take expectations:

Ve = cov( Xy, Xio—r) = B[ X Xi—r],
= E{le. + (6 + H)Zzlgbi_let_i].[et_T +(o+ e)Zilw—let_T_j]}.

The e-term in the first [.] gives no contribution. The i-term in the first []
for i = 7 and the ¢,_, in the second [.] give (¢ + 0)¢"1o?. The product
of the ¢ term in the first sum and the j term in the second contributes for
i=71+7; for j >1it gives (¢ + 0)*¢" 7 L.¢' 1.0 So

Yy = (¢ + 0)¢7’—10_2 + <¢ + 9)2¢7’0_22j11¢2(j—1).

The geometric series is 1/(1 — ¢?) as before, so for 7 > 1

(¢ +0)¢™ "o

Vr = w-[1—¢2+¢(¢+6)] 3 Ve = 02 (0+0)(14+00)¢™ " /(1—¢%).
[5]

Autocorrelation. The autocorrelation p, := 7, /7o is thus
po=1,  pr = (15 2001 09 R0 (r>1). 2]
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Q6. The multivariate normal distribution N,(p, ) in n dimensions with
mean vector p and covariance matrix > has characteristic function ¢(t) =
exp{—p"t—5t'St}, and by Edgeworth’s theorem, when X is positive definite
(invertible), has density

%) = ——

e
If

ylu ~ N(XB + Zu, R), u~ N(0,D),

Fly.u) = F(ylu) () = const. exp{~5 (y=X 5~ Zu)" B~ (y=X B~ Zu)}.exp{ —5u” D~ u}.

This is multinormal (has the functional form in u of Edgeworth’s theorem).
So uly is also multinormal (conditioning a multinormal on a subvector gives
a multinormal):

f(uly) ~ N(X,v), 3]

say. As
f(uly) = f(y,w)/f(y)

by Bayes’ theorem, we can identify which multinormal uly is by picking

out the quadratic term in u and the linear term in u (in f(y,u): f(y) =

[ f(ylu)du does not involve u) and using Edgeworth’s theorem. [2]
The quadratic term in u is

1 1
—E[uTZTR_lZu +ul D), = —§uTz—1u, Y= (Z"R'Z+ D)t
[3]
The linear term in u is
—u"ZTR My — XpB), = —u'S 7y,
v=SZ"R Yy - XB)=(Z"R'Z+D Y ' Z'R ' (y — XB): 3]
uly~ N(S,v), S=(Z"RZ+D7), v=(Z"R'Z+D ) ZTR (y—XB).
3]
Application: 1. Financial. Here y is the response variable (output, profit,
market share etc.); X represents the fized effects (macro-economic variables
— interest rates, trade figures etc.); Zu represents the random effects (firm-
specific aspects — firms differ). [3]
2. Fducational. Response: performance; fixed effects: teaching methods,

etc.; random effects: the pupils — pupils differ.
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